Skip to main content
Log in

Length spectra and degeneration of flat metrics

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metrics. Secondly, we give an embedding into the space of geodesic currents and use this to obtain a compactification for the space of flat metrics. The geometric interpretation is that flat metrics degenerate to mixed structures on the surface: part flat metric and part measured foliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alperin, R., Bass, H.: Length functions of group actions on Λ-trees. In: Combinatorial Group Theory and Topology, Alta, Utah, 1984. Ann. of Math. Stud., vol. 111, pp. 265–378. Princeton Univ. Press, Princeton (1987)

    Google Scholar 

  2. Birman, J.S., Series, C.: Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology 24(2), 217–225 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math. (2) 124(1), 71–158 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bonahon, F.: The geometry of Teichmüller space via geodesic currents. Invent. Math. 92(1), 139–162 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  6. Cohen, M.M., Lustig, M., Steiner, M.: R-tree actions are not determined by the translation lengths of finitely many elements. In: Arboreal Group Theory, Berkeley, CA, 1988. Math. Sci. Res. Inst. Publ., vol. 19, pp. 183–187. Springer, New York (1991)

    Google Scholar 

  7. Croke, C., Fathi, A., Feldman, J.: The marked length-spectrum of a surface of nonpositive curvature. Topology 31(4), 847–855 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Croke, C.B.: Rigidity for surfaces of nonpositive curvature. Comment. Math. Helv. 65(1), 150–169 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Culler, M., Morgan, J.W.: Group actions on R-trees. Proc. Lond. Math. Soc. (3) 55(3), 571–604 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fathi, A.: Le spectre marqué des longueurs des surfaces sans points conjugués. C. R. Acad. Sci. Paris Sér. I Math. 309(9), 621–624 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les Surfaces. Astérisque, vol. 66. Société Mathématique de France, Paris (1979). Séminaire Orsay, With an English summary

    Google Scholar 

  12. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory. Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  13. Gardiner, F.P., Masur, H.: Extremal length geometry of Teichmüller space. Complex Var. Theory Appl. 16(2–3), 209–237 (1991)

    MATH  MathSciNet  Google Scholar 

  14. Hamenstädt, U.: Length functions and parameterizations of Teichmüller space for surfaces with cusps. Ann. Acad. Sci. Fenn. Math. 28(1), 75–88 (2003)

    MathSciNet  Google Scholar 

  15. Hamenstädt, U.: Parametrizations of Teichmüller space and its Thurston boundary. In: Geometric Analysis and Nonlinear Partial Differential Equations, pp. 81–88. Springer, Berlin (2003)

    Google Scholar 

  16. Hersonsky, S., Paulin, F.: On the rigidity of discrete isometry groups of negatively curved spaces. Comment. Math. Helv. 72(3), 349–388 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kerckhoff, S.P.: The asymptotic geometry of Teichmüller space. Topology 19(1), 23–41 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lenzhen, A.: Teichmüller geodesics that do not have a limit in PMF. Geom. Topol. 12(1), 177–197 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levitt, G.: Foliations and laminations on hyperbolic surfaces. Topology 22(2), 119–135 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Masur, H.: On a class of geodesics in Teichmüller space. Ann. Math. (2) 102(2), 205–221 (1975)

    Article  MathSciNet  Google Scholar 

  21. Masur, H.: Closed trajectories for quadratic differentials with an application to billiards. Duke Math. J. 53(2), 307–314 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. McMullen, C.: Amenability, Poincaré series and quasiconformal maps. Invent. Math. 97(1), 95–127 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nagata, J.: Modern Dimension Theory, revised edn. Sigma Series in Pure Mathematics, vol. 2. Heldermann Verlag, Berlin (1983)

    MATH  Google Scholar 

  24. Otal, J.P.: Le spectre marqué des longueurs des surfaces à courbure négative. Ann. Math. (2) 131(1), 151–162 (1990)

    Article  MathSciNet  Google Scholar 

  25. Papadopoulos, A. (ed.): Handbook of Teichmüller Theory. Vol. I. IRMA Lectures in Mathematics and Theoretical Physics, vol. 11. European Mathematical Society (EMS), Zürich (2007)

    Google Scholar 

  26. Penner, R.C., Harer, J.L.: Combinatorics of Train Tracks. Annals of Mathematics Studies, vol. 125. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  27. Rafi, K.: A characterization of short curves of a Teichmüller geodesic. Geom. Topol. 9, 179–202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schmutz, P.: Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen. Comment. Math. Helv. 68(2), 278–288 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Smillie, J., Vogtmann, K.: Length functions and outer space. Mich. Math. J. 39(3), 485–493 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Strebel, K.: Quadratic Differentials. A Series of Modern Surveys in Mathematics, vol. 5. Springer, Berlin (1980)

    Google Scholar 

  31. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. (2) 121(1), 169–186 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Duchin.

Additional information

The first author is partially supported by NSF grant DMS-0906086. The second author is partially supported by NSF grant DMS-0905748.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchin, M., Leininger, C.J. & Rafi, K. Length spectra and degeneration of flat metrics. Invent. math. 182, 231–277 (2010). https://doi.org/10.1007/s00222-010-0262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0262-y

Keywords

Navigation