Skip to main content
Log in

Regularity of solutions to regular shock reflection for potential flow

Inventiones mathematicae Aims and scope

Abstract

The shock reflection problem is one of the most important problems in mathematical fluid dynamics, since this problem not only arises in many important physical situations but also is fundamental for the mathematical theory of multidimensional conservation laws that is still largely incomplete. However, most of the fundamental issues for shock reflection have not been understood, including the regularity and transition of different patterns of shock reflection configurations. Therefore, it is important to establish the regularity of solutions to shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, for a regular reflection configuration, the potential flow governs the exact behavior of the solution in C 1,1 across the pseudo-sonic circle even starting from the full Euler flow, that is, both of the nonlinear systems are actually the same in a physically significant region near the pseudo-sonic circle; thus, it becomes essential to understand the optimal regularity of solutions for the potential flow across the pseudo-sonic circle (the transonic boundary from the elliptic to hyperbolic region) and at the point where the pseudo-sonic circle (the degenerate elliptic curve) meets the reflected shock (a free boundary connecting the elliptic to hyperbolic region). In this paper, we study the regularity of solutions to regular shock reflection for potential flow. In particular, we prove that the C 1,1-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock. We also obtain the C 2,α regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. The problem involves two types of transonic flow: one is a continuous transition through the pseudo-sonic circle from the pseudo-supersonic region to the pseudo-subsonic region; the other a jump transition through the transonic shock as a free boundary from another pseudo-supersonic region to the pseudo-subsonic region. The techniques and ideas developed in this paper will be useful to other regularity problems for nonlinear degenerate equations involving similar difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, New York (1991)

    Google Scholar 

  2. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. John Wiley &Sons, New York; Chapman &Hall, London (1958)

  3. Betsadze, A.V.: Equations of the Mixed Type. Macmillan Company, New York (1964)

    Google Scholar 

  4. Caffarelli, L.A., Jerison, D., Kenig, C.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. (2) 155, 369–404 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Canić, S., Keyfitz, B.L., Kim, E.H.: A free boundary problems for a quasilinear degenerate elliptic equation: regular reflection of weak shocks. Comm. Pure Appl. Math. 55, 71–92 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Canić, S., Keyfitz, B.L., Kim, E.H.: Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks. SIAM J. Math. Anal. 37, 1947–1977 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, T., Chen, G.-Q.: Diffraction of planar shock along the compressive corner. Acta Math. Sci. 6, 241–257 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Chen, G.-Q., Feldman, M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Am. Math. Soc. 16, 461–494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, G.-Q., Feldman, M.: Potential theory for shock reflection by a large-angle wedge. Proc. National Acad. Sci. USA (PNAS) 102, 15368–15372 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, G.-Q., Feldman, M.: Global solutions to shock reflection by large-angle wedges. To appear in Ann. Math. (2008)

  11. Chen, G.-Q., Feldman, M.: Regular shock reflection and von Neumann conjectures. Preprint, November 2008

  12. Chen, S.-X.: Linear approximation of shock reflection at a wedge with large angle. Commun. Partial Diff. Eqs. 21, 1103–1118 (1996)

    Article  MATH  Google Scholar 

  13. Cole, J.D., Cook, L.P.: Transonic Aerodynamics. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  14. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1948)

    MATH  Google Scholar 

  15. Daskalopoulos, P., Hamilton, R.: The free boundary in the Gauss curvature flow with flat sides. J. Reine Angew. Math. 510, 187–227 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Elling, V., Liu, T.-P.: Supersonic flow onto a solid wedge. Comm. Pure Appl. Math. 61, 1437–1448 (2008)

    Article  MathSciNet  Google Scholar 

  17. Elling, V., Liu, T.-P.: The ellipticity principle for self-similar potential flows. J. Hyper. Diff. Eqs. 2, 909–917 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gamba, I., Rosales, R.R., Tabak, E.G.: Constraints on possible singularities for the unsteady transonic small disturbance (UTSD) equations. Comm. Pure Appl. Math. 52, 763–779 (1999)

    Article  MathSciNet  Google Scholar 

  19. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  20. Glimm, J., Klingenberg, C., McBryan, O., Plohr, B., Sharp, D., Yaniv, S.: Front tracking and two-dimensional Riemann problems. Adv. Appl. Math. 6, 259–290 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Glimm, J., Majda, A.: Multidimensional Hyperbolic Problems and Computations. Springer, New York (1991)

    MATH  Google Scholar 

  22. Guderley, K.G.: The Theory of Transonic Flow. Pergamon Press, Oxford, London, Paris, Frankfurt; Addison-Wesley Publishing Co. Inc., Reading, MA (1962)

  23. Harabetian, E.: Diffraction of a weak shock by a wedge. Comm. Pure Appl. Math. 40, 849–863 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hunter, J.K.: Transverse diffraction of nonlinear waves and singular rays. SIAM J. Appl. Math. 48, 1–37 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hunter, J.K., Keller, J.B.: Weak shock diffraction. Wave Motion 6, 79–89 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Keller, J.B., Blank, A.A.: Diffraction and reflection of pulses by wedges and corners. Comm. Pure Appl. Math. 4, 75–94 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lighthill, M.J.: The diffraction of a blast, I. Proc. Royal Soc. London A 198, 454–470 (1949); II. Proc. Royal Soc. London A 200, 554–565 (1950)

  29. Lin, F.H., Wang, L.-H.: A class of fully nonlinear elliptic equations with singularity at the boundary. J. Geom. Anal. 8, 583–598 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Mach, E.: Über den Verlauf von Funkenwellen in der Ebene und im Raume. Sitzungsber. Akad. Wiss. Wien 78, 819–838 (1878)

    Google Scholar 

  31. Majda, A., Thomann, E.: Multidimensional shock fronts for second order wave equations. Comm. Partial Diff. Eqs. 12, 777–828 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Morawetz, C.S.: Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math. 47, 593–624 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Serre, D.: Shock reflection in gas dynamics. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 4, pp. 39–122. Elsevier, North-Holland (2007)

    Chapter  Google Scholar 

  34. Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)

    Google Scholar 

  35. Von Karman, T.: The similarlity law of transonic flow. J. Math. Phys. 26, 182–190 (1947)

    MATH  MathSciNet  Google Scholar 

  36. Von Neumann, J.: Collect Works, Vol. 5. Pergamon, New York (1963)

    Google Scholar 

  37. Xu, X.-M.: Equations of Mathematical Physics. Higher Education Press, Beijing (1956). In Chinese

    Google Scholar 

  38. Yang, G.-J.: The Euler–Poisson–Darboux Equations. Yuannan University Press, Yuannan (1989). In Chinese

    Google Scholar 

  39. Zheng, Y.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. Engl. Ser. 22, 177–210 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, M., Chen, GQ. & Feldman, M. Regularity of solutions to regular shock reflection for potential flow. Invent. math. 175, 505–543 (2009). https://doi.org/10.1007/s00222-008-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0156-4

Keywords

Navigation