Skip to main content
Log in

Renormalization and blow up for charge one equivariant critical wave maps

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove the existence of equivariant finite time blow-up solutions for the wave map problem from ℝ2+1S 2 of the form \(u(t,r)=Q(\lambda(t)r)+\mathcal{R}(t,r)\) where u is the polar angle on the sphere, \(Q(r)=2\arctan r\) is the ground state harmonic map, λ(t)=t -1-ν, and \(\mathcal{R}(t,r)\) is a radiative error with local energy going to zero as t→0. The number \(\nu>\frac{1}{2}\) can be prescribed arbitrarily. This is accomplished by first “renormalizing” the blow-up profile, followed by a perturbative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Natl. Bureau Stand. Appl. Math. Ser., vol. 55. U.S. Government Printing Office, Washington, D.C. (1964)

  2. Bizon, P., Tabor, Z.: Formation of singularities for equivariant 2+1-dimensional wave maps into the 2-sphere. Nonlinearity 14(5), 1041–1053 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bizon, P., Ovchinnikov, Y.N., Sigal, I.M.: Collapse of an instanton. Nonlinearity 17(4), 1179–1191 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cazenave, T., Shatah, J., Tahvildar-Zadeh, A.S.: Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. Henri Poincaré, Phys. Théor. 68(3), 315–349 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math. 46, 1041–1091 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cote, R.: Instability of non-constant harmonic maps for the 2+1-dimensional equivariant wave map system. Int. Math. Res. Not. 2005(57), 3525–3549 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunford, N., Schwartz, J.: Linear Operators. Part II. Wiley Classics Library. John Wiley & Sons, Inc., New York (1988)

  8. Gesztesy, F., Zinchenko, M.: On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr. 279, 1041–1082 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Isenberg, J., Liebling, S.: Singularity formation for 2+1 wave maps. J. Math. Phys. 43(1), 678–683 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karageorgis, P., Strauss, W.A.: Instability of steady states for nonlinear wave and heat equations. Preprint (2006)

  11. Krieger, J.: Global regularity of wave maps from R 2+1 to H 2. Small energy. Commun. Math. Phys. 250(3), 507–580 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Krieger, J., Schlag, W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krieger, J., Schlag, W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Krieger, J., Schlag, W.: Non-generic blow-up solutions for the critical focusing NLS in 1-d. Preprint (2005)

  15. Krieger, J., Schlag, W., Tataru, D.: Slow blow-up solutions for the H 1 critical focusing semi-linear wave equation in ℝ3. Preprint (2007)

  16. Merle, F., Raphael, P.: Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13(3), 591–642 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Merle, F., Raphael, P.: On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merle, F., Raphael, P.: On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation. J. Am. Math. Soc. 19(1), 37–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Perelman, G.: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4), 605–673 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical O(3) σ-model. Preprint (2006)

  22. Schlag, W.: Stable manifolds for an orbitally unstable NLS. To appear in Ann. Math.

  23. Shatah, J.: Weak solutions and development of singularities of the SU(2) σ-model. Commun. Pure Appl. Math. 41(4), 459–469 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shatah, J., Tahvildar-Zadeh, S.A.: Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds. Commun. Pure Appl. Math. 45(8), 947–971 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shatah, J., Tahvildar-Zadeh, S.A.: On the Cauchy problem for equivariant wave maps. Commun. Pure Appl. Math. 47(5), 719–754 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stein, E.: Harmonic Analysis. Princeton University Press (1993)

  27. Struwe, M.: Radially symmetric wave maps from (1+2)-dimensional Minkowski space to general targets. Calc. Var. Partial Differ. Equ. 16(4), 431–437 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math. 56(7), 815–823 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    Article  MATH  Google Scholar 

  30. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tataru, D.: The wave maps equation. Bull. Am. Math. Soc. 41(2), 185–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tataru, D.: Rough solutions for the wave maps equation. Am. J. Math 127(2), 293–377 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Watson, G.: A treatise on the theory of Bessel functions. Cambridge (1944)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tataru.

Additional information

Mathematics Subject Classification (1991)

35L05, 35Q75, 35P25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, J., Schlag, W. & Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps. Invent. math. 171, 543–615 (2008). https://doi.org/10.1007/s00222-007-0089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0089-3

Keywords

Navigation