Skip to main content
Log in

Absolutely indecomposable representations and Kac-Moody Lie algebras

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, H.H., Jantzen, J.C.: Cohomology of induced representations for algebraic groups. Math. Ann. 269, 487–525 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Behrend, K.A.: The Lefschetz trace formula for algebraic stacks. Invent. Math. 112, 127–149 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100. Soc. Math. France 1983

  4. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. (2) 98, 480–497 (1973)

    Google Scholar 

  5. Bialynicki-Birula, A.: Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24, 667–674 (1976)

    MATH  Google Scholar 

  6. Crawley-Boevey, W.: On the exceptional fibres of Kleinian singularities. Am. J. Math. 122, 1027–1037 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126, 257–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crawley-Boevey, W.: Normality of Marsden-Weinstein reductions for representations of quivers. Math. Ann. 325, 55–79 (2003)

    MATH  Google Scholar 

  9. Crawley-Boevey, W., Holland, M.P.: Non-commutative deformations of Kleinian singularities. Duke Math. J. 92, 605–635 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Deligne, P.: Rapport sur la formule des traces. SGA 4-1/2 (New York), Lecture Notes in Mathematics, vol. 569, pp. 76–109. New York: Springer 1977

  11. Deligne, P.: Théorèmes de finitude en cohomologie l-adic. SGA 4-1/2 (New York), Lecture Notes in Mathematics, vol. 569, pp. 233–261. New York: Springer 1977

  12. Deligne, P.: La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52, 137–252 (1980)

    Google Scholar 

  13. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs of the AMS, vol. 6. Am. Math. Soc. 1976

  14. Donkin, S.: Good filtrations of rational modules for reductive groups. The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) (Providence, RI), pp. 69–80. Providence, RI: Am. Math. Soc. 1987

  15. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972), correction, ibid. 6, 309 (1972)

    MATH  Google Scholar 

  16. Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215–248 (1974/75)

    MATH  Google Scholar 

  17. Hua, J.: Counting representations of quivers over finite fields. J. Algebra 226, 1011–1033 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jantzen, J.C.: Representations of algebraic groups. Orlando, FA: Academic Press 1987

  19. Kac, V.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56, 57–92 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Kac, V.: Root systems, representations of quivers and invariant theory. Invariant theory. Lecture Notes in Mathematics, vol. 996, pp. 74–108. Springer Verlag 1982

  21. Kashiwara, M., Saito, Y.: Geometric construction of crystal bases. Duke Math. J. 89, 9–36 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Kim, M.: A Lefschetz trace formula for equivariant cohomology. Ann. Sci. Éc. Norm. Sup., IV Sér. 28, 669–688 (1995)

    Google Scholar 

  23. King, A.D.: Moduli of representations of finite-dimensional algebras. Q. J. Math., Oxf. II. Ser. 45, 515–530 (1994)

    Google Scholar 

  24. Kraft, H., Riedtmann, C.: Geometry of representations of quivers. Representations of algebras. London Math Soc. Lecture Note Ser., vol. 116, pp. 109–145. Cambridge University Press 1986

  25. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29, 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Le Bruyn, L.: Centers of generic division algebras and zeta-functions. Ring theory. Lecture Notes in Mathematics, vol. 1328, pp. 135–164. Springer Verlag 1986

  27. Lusztig, G.: Quivers, perverse sheaves and quantized enveloping algebras. J. Am. Math. Soc. 4, 365–421 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Lusztig, G.: Semicanonical bases arising from enveloping algebras. Adv. Math. 151, 129–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mathieu, O.: Filtrations de G-modules. C. R. Acad. Sci., Paris, Sér. I, Math. 309, 273–276 (1989)

    Google Scholar 

  30. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76, 365–416 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Nastacescu, C., Van Oystaeyen, F.: Graded ring theory. North-Holland 1982

  32. Neeman, A.: The topology of quotient varieties. Ann. Math. (2) 122, 419–459 (1985)

    Google Scholar 

  33. Reineke, M.: The Harder-Narashiman system in quantum groups and cohomology of quiver moduli. Invent. Math. 152, 349–368 (2003)

    MATH  Google Scholar 

  34. Rudakov, A.: Stability for an abelian category. J. Algebra 197, 231–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26, 225–274 (1977)

    MATH  Google Scholar 

  36. Sevenhant, B.: Some more evidence for a conjecture of Kac. In preparation

  37. Slodowy, P.: Four lectures on simple groups and singularities. Rijksuniversiteit Utrecht Mathematical Institute, Utrecht 1980

  38. Warner, F.: Foundations of differentiable manifolds and Lie groups. Scott, Foresman and Companie 1971

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Crawley-Boevey or Michel Van den Bergh.

Additional information

Dedicated to Idun Reiten on the occasion of her sixtieth birthday

Mathematics Subject Classification (1991)

16G20, 17B67

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawley-Boevey, W., Van den Bergh, M. Absolutely indecomposable representations and Kac-Moody Lie algebras. Invent. math. 155, 537–559 (2004). https://doi.org/10.1007/s00222-003-0329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0329-0

Keywords

Navigation