Skip to main content

Advertisement

Log in

Spinal cord injury leads to more neurodegeneration in the hippocampus of aged male rats compared to young rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although the disruptive effects of spinal cord injury (SCI) on the hippocampus have been confirmed in some animal studies, no study has investigated its retrograde manifestations in the hippocampus of aged subjects. Herein, we compared the aged rats with young ones 3 weeks after the induction of SCI (Groups: Sham.Young, SCI.Young, Sham.Aged, SCI.Aged). The locomotion, hippocampal apoptosis, hippocampal rhythms (Delta, Theta, Beta, Gamma) max frequency (Max.rf) and power, hippocampal neurogenesis, and hippocampal receptors (NMDA, GABA A, Muscarinic1/M1), which are important in the generation of rhythms and neurogenesis, were compared in aged rats in contrast to young rats. At the end of the third week, the number of apoptotic (Tunel+) cells in the hippocampus (CA1, DG) of SCI animals was significantly higher compared to the sham animals, and also, it was significantly higher in the SCI.Aged group compared to SCI.Young group. Moreover, the rate of neurogenesis (DCX+, BrdU+ cells) and expression of M1 and NMDA receptors were significantly lower in the SCI.Aged group compared to SCI.Young group. The power and Max.fr of all rhythms were significantly lower in SCI groups compared to sham groups. Despite the decrease in the power of rhythms in the SCI.Aged group compared to SCI.Young group, there was no significant difference between them, and in terms of Max.fr index, only the Max.fr of theta and beta rhythms were significantly lower in the SCI.Aged group compared to SCI.Young group. This study showed that SCI could cause more neurodegeneration in the hippocampus of aged animals compared to young animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  • Ahnaou A, Rodriguez-Manrique D, Embrechts S, Biermans R, Manyakov NV, Youssef SA et al (2020) Aging alters olfactory bulb network oscillations and connectivity: relevance for aging-related neurodegeneration studies. Neural Plast 2020:1–17

    Google Scholar 

  • Åmellem I, Yovianto G, Chong HT, Nair RR, Cnops V, Thanawalla A et al (2021) Role of NMDA receptors in adult neurogenesis and normal development of the dentate gyrus. eNeuro 8(4):ENEURO. 0566-20.2021

    Article  PubMed  Google Scholar 

  • Amenta F, Liu A, Zeng Y-C, Zaccheo D (1994) Muscarinic cholinergic receptors in the hippocampus of aged rats: influence of choline alphoscerate treatment. Mech Ageing Dev 76(1):49–64

    Article  CAS  PubMed  Google Scholar 

  • Amenta F, Mignini F, Ricci A, Sabbatini M, Tomassoni D, Tayebati SK (2001) Age-related changes of dopamine receptors in the rat hippocampus: a light microscope autoradiography study. Mech Ageing Dev 122(16):2071–2083

    Article  CAS  PubMed  Google Scholar 

  • at NNSCISCFaF, https://www.nscisc.uab.edu/public_content/pdf/ G-A, 19. FFFpAJ.

  • Audesse AJ, Webb AE (2020) Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 191:111323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azizi Zeinalhajlou A, Amini A, Tabrizi JS (2015) Consequences of Population aging in iran with emphasis on its increasing challenges on the health system (literature review). Depict Health 6(1):54–64

    Google Scholar 

  • Babcock KR, Page JS, Fallon JR, Webb AE (2021) Adult hippocampal neurogenesis in aging and alzheimer’s disease. Stem Cell Reports 16(4):681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg DA, Belnoue L, Song H, Simon A (2013) Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 140(12):2548–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizon JL, Lee HJ, Gallagher M (2004) Neurogenesis in a rat model of age-related cognitive decline. Aging Cell 3(4):227–234

    Article  CAS  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börsch-Supan A (2014) Aging population: problems and policy options in the US and Germany. Economic Policy 6(12):103–140

    Article  Google Scholar 

  • Buzsáki G (2002) Theta Oscillations in the hippocampus. Neuron 33(3):325–340

    Article  PubMed  Google Scholar 

  • Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos-Beltrán D, Marshall L (2021) Changes in sleep EEG with aging in humans and rodents. Pflügers Arch Eur J Physiol 473(5):841–851

    Article  Google Scholar 

  • Chang C-M, Lee M-H, Wang T-C, Weng H-H, Chung C-Y, Yang J-T (2009) Brain protection by methylprednisolone in rats with spinal cord injury. NeuroReport 20(10):968–972

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17(4):239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG (2007) Progesterone Improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 24(9):1475–1486

    Article  PubMed  Google Scholar 

  • Dannenberg H, Young K, Hasselmo M (2017) Modulation of hippocampal circuits by muscarinic and nicotinic receptors. Front Neural Circuits 11:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Moreno M, Armenteros T, Gradari S, Hortigüela R, García-Corzo L, Fontán-Lozano Á et al (2018) Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci U S A 115(45):11625–11630

    Article  PubMed  PubMed Central  Google Scholar 

  • Doust YV, Rowe RK, Adelson PD, Lifshitz J, Ziebell JM (2021) Age-at-injury determines the extent of long-term neuropathology and microgliosis after a diffuse brain injury in male rats. Front Neurol. https://doi.org/10.3389/fneur.2021.722526

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo T, Tominaga T, Olson L (2009) Cortical changes following spinal cord injury with emphasis on the Nogo signaling system. Neuroscientist 15(3):291–299

    Article  PubMed  Google Scholar 

  • Fallahi S, Babri S, Farajdokht F, Ghiasi R, Zangbar HS, Karimi P et al (2019) Neuroprotective effect of ghrelin in methamphetamine-treated male rats. Neurosci Lett 707:134304

    Article  PubMed  Google Scholar 

  • Felix M-S, Popa N, Djelloul M, Boucraut J, Gauthier P, Bauer S et al (2012) Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Frost SB, Dunham CL, Barbay S, Krizsan-Agbas D, Winter MK, Guggenmos DJ et al (2015) Output properties of the cortical hindlimb motor area in spinal cord-injured rats. J Neurotrauma 32(21):1666–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Genovese T, Mazzon E, Di Paola R, Crisafulli C, Muià C, Bramanti P et al (2006) Increased oxidative-related mechanisms in the spinal cord injury in old rats. Neurosci Lett 393(2–3):141–146

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani M, Shahabi P, Ebrahimi-kalan A, Soltani-Zangbar H, Mahmoudi J, Bani S et al (2018) Induction of traumatic brain and spinal cord injury models in rat using a modified impactor device. Physiol Pharmaco 22(4):228–239

    Google Scholar 

  • Grover S, Nguyen JA, Reinhart RMG (2021) synchronizing brain rhythms to improve cognition. Annu Rev Med 72:29–43

    Article  CAS  PubMed  Google Scholar 

  • Gwak YS, Hains BC, Johnson KM, Hulsebosch CE (2004a) Locomotor recovery and mechanical hyperalgesia following spinal cord injury depend on age at time of injury in rat. Neurosci Lett 362(3):232–235

    Article  CAS  PubMed  Google Scholar 

  • Gwak YS, Hains BC, Johnson KM, Hulsebosch CE (2004b) Effect of age at time of spinal cord injury on behavioral outcomes in rat. J Neurotrauma 21(8):983–993

    Article  PubMed  Google Scholar 

  • Higo M, Williamson JB (2011) Global aging. Handbook of sociology of aging. Springer, New York, pp 117–129

    Chapter  Google Scholar 

  • Hosseini M, Karami Z, Yousefifard M, Janzadeh A, Zamani E, Nasirinezhad F (2020) Simultaneous intrathecal injection of muscimol and endomorphin-1 alleviates neuropathic pain in rat model of spinal cord injury. Brain Behavior 10(5):e01576

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson TK, Howe MD, Schmidt B, Hinman JR, Escabí MA, Markus EJ (2013) Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation. J Neurophysiol 109(7):1852–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadi MP, Behrens MM, Sejnowski TJ (2016) Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biol Psychiatry 79(9):716–726

    Article  CAS  PubMed  Google Scholar 

  • Joo JY, Kim BW, Lee JS, Park JY, Kim S, Yun YJ et al (2007) Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells. J Cell Sci 120(Pt 8):1358–1370

    Article  CAS  PubMed  Google Scholar 

  • Joo J, Lee S, Nah S-S, Kim YO, Kim D-S, Shim S-H et al (2013) Lasp1 is down-regulated in NMDA receptor antagonist-treated mice and implicated in human schizophrenia susceptibility. J Psychiatr Res 47(1):105–112

    Article  PubMed  Google Scholar 

  • Jure I, Pietranera L, De Nicola AF, Labombarda F (2017a) Spinal cord injury impairs neurogenesis and induces glial reactivity in the hippocampus. Neurochem Res 42(8):2178–2190

    Article  CAS  PubMed  Google Scholar 

  • Jure I, Pietranera L, De Nicola AF, Labombarda F (2017b) Spinal cord injury impairs neurogenesis and induces glial reactivity in the hippocampus. Neurochem Res 42(8):2178–2190

    Article  CAS  PubMed  Google Scholar 

  • Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F et al (2019) Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176(6):1407–19.e14

    Article  CAS  PubMed  Google Scholar 

  • Khazaeipour Z, Norouzi-Javidan A, Kaveh M, Khanzadeh Mehrabani F, Kazazi E, Emami-Razavi S-H (2014) Psychosocial outcomes following spinal cord injury in Iran. J Spinal Cord Med 37(3):338–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss T, Hoffmann WE, Hajós M (2011) Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. Int J Neuropsychopharmacol 14(1):29–42

    Article  CAS  PubMed  Google Scholar 

  • Kita Y, Ago Y, Higashino K, Asada K, Takano E, Takuma K et al (2014) Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int J Neuropsychopharmacol 17(12):1957–1968

    Article  CAS  PubMed  Google Scholar 

  • Lai Q, Hu P, Li Q, Li X, Yuan R, Tang X et al (2016) NMDA receptors promote neurogenesis in the neonatal rat subventricular zone following hypoxic-ischemic injury. Mol Med Rep 13(1):206–212

    Article  CAS  PubMed  Google Scholar 

  • Lebois EP, Thorn C, Edgerton JR, Popiolek M, Xi S (2018) Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology 136:362–373

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M et al (2015) Septohippocampal neuromodulation improves cognition after traumatic brain injury. J Neurotrauma 32(22):1822–1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X (2019) Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem Res 44(8):2007–2019

    Article  CAS  PubMed  Google Scholar 

  • Mehri N, Messkoub M, Kunkel S (2020) Trends, Determinants and the implications of population aging in Iran. Ageing Int 45(4):327–343

    Article  Google Scholar 

  • Mirzaie M, Darabi S (2017) Population aging in iran and rising health care costs. Salmand Irani J Ageing 12(2):156–169

    Article  Google Scholar 

  • Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  • Palpagama TH, Sagniez M, Kim S, Waldvogel HJ, Faull RL, Kwakowsky A (2019) GABA(A) receptors are well preserved in the hippocampus of aged mice. eNeuro 6(4):ENEURO.0496-18.2019

    Article  PubMed  Google Scholar 

  • Panagiotou M, Vyazovskiy VV, Meijer JH, Deboer T (2017) Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice. Sci Rep 7(1):43656

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi-Movaghar V, Saadat S, Rasouli MR, Ganji S, Ghahramani M, Zarei M-R et al (2009) Prevalence of Spinal cord injury in Tehran. Iran J Spinal Cord Med 32(4):428–431

    Article  PubMed  Google Scholar 

  • Rahimi-Movaghar V, Moradi-Lakeh M, Rasouli MR, Vaccaro AR (2010) Burden of spinal cord injury in Tehran. Iran Spinal Cord 48(6):492–497

    Article  CAS  PubMed  Google Scholar 

  • Rissman RA, De Blas AL, Armstrong DM (2007) GABAA receptors in aging and Alzheimer’s disease. J Neurochem 103(4):1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Rivas J, Gaztelu JM, García-Austt E (1996) Changes in hippocampal cell discharge patterns and theta rhythm spectral properties as a function of walking velocity in the guinea pig. Exp Brain Res 108(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A (2021) Neurogenesis after Spinal cord injury: state of the art. Cells 10(6):1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69(3):143–179

    Article  CAS  PubMed  Google Scholar 

  • Rowe RK, Ziebell JM, Harrison JL, Law LM, Adelson PD, Lifshitz J (2016) Aging with traumatic brain injury: effects of age at injury on behavioral outcome following diffuse brain injury in rats. Dev Neurosci 38(3):195–205

    Article  CAS  PubMed  Google Scholar 

  • Sefiani A, Geoffroy CG (2021) The potential role of inflammation in modulating endogenous hippocampal neurogenesis after spinal cord injury. Front Neurosci. https://doi.org/10.3389/fnins.2021.682259

    Article  PubMed  PubMed Central  Google Scholar 

  • Serra M, Ghiani CA, Foddi MC, Motzo C, Biggio G (1994) NMDA receptor function is enhanced in the hippocampus of aged rats. Neurochem Res 19(4):483–487

    Article  CAS  PubMed  Google Scholar 

  • Shohayeb B, Diab M, Ahmed M, Ng DCH (2018) Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 7(1):1–19

    Article  Google Scholar 

  • Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS (2008) Voluntary running attenuates age-related deficits following SCI. Exp Neurol 210(1):207–216

    Article  PubMed  Google Scholar 

  • Soltani Zangbar H, Ghadiri T, Vafaee MS, Ebrahimi Kalan A, Karimipour M, Fallahi S et al (2020) (2020) A potential entanglement between the spinal cord and hippocampus: Theta rhythm correlates with neurogenesis deficiency following spinal cord injury in male rats. J Neurosci Res 98(12):2451–2467

    Article  CAS  PubMed  Google Scholar 

  • Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S et al (2021) Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 172:31–42

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Brady RD, Casillas-Espinosa PM, Wright DK, Semple BD, Kim HA et al (2019) Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain Behav Immun 80:536–550

    Article  CAS  PubMed  Google Scholar 

  • Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M et al (2014) Intravenous Transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34(1):313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE et al (2018) Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun 9(1):1–15

    Article  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Morris RGM (2013) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369(1633):20130288

    Article  PubMed  Google Scholar 

  • Wilcox KS, Buchhalter J, Dichter MA (1994) Properties of inhibitory and excitatory synapses between hippocampal neurons in very low density cultures. Synapse (new York, NY) 18(2):128–151

    Article  CAS  Google Scholar 

  • Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T et al (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34(33):10989–11006

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Huang S, Xie S, Zhou W, Li C, Xing Z et al (2021) Potential correlation between depression-like behavior and the mitogen-activated protein kinase pathway in the rat hippocampus following spinal cord injury. World Neurosurgery 154:e29–e38

    Article  PubMed  Google Scholar 

  • Zhao X, Rosenke R, Kronemann D, Brim B, Das SR, Dunah AW et al (2009) The effects of aging on N-methyl-D-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience 162(4):933–945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Iran National Science Foundation (INSF, No. 97017102). The authors would like to express their gratitude to Sajjad Badalkhani for his assistance in the electrophysiological analysis.

Author information

Authors and Affiliations

Authors

Contributions

HSZ and PSH conceptualized and designed research; HSZ, SF, and MGH performed data collection and analysis; HS prepared figures and tables; MJ reviewed the manuscript for its originality and usage of English language; LH participated in the revision. All authors approved the final draft.

Corresponding authors

Correspondence to Hamid Soltani Zangbar or Parviz Shahabi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Communicated by Sreedharan Sajikumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zangbar, H.S., Fallahi, S., Hosseini, L. et al. Spinal cord injury leads to more neurodegeneration in the hippocampus of aged male rats compared to young rats. Exp Brain Res 241, 1569–1583 (2023). https://doi.org/10.1007/s00221-023-06577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06577-x

Keywords

Navigation