Skip to main content
Log in

Different generalization of fast and slow visuomotor adaptation across locomotion and pointing tasks

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Sensorimotor adaptation can involve multiple learning processes with different time courses, and these processes may have different patterns of transfer. In this study, we tested how slow learning and fast learning transfer across tasks, and the specificity of transfer. We tested two natural goal-directed tasks: pointing and walking toward a visible target. We also tested a novel “hand locomotion” task in which subjects used pointing movements to cause simulated self-motion in virtual reality. The hand locomotion task used the same physical movement as pointing, but performed the same function as stepping. During an experimental block, subjects performed alternating training trials with perturbed visual feedback and test trials with no feedback. The test trials were either the same task to measure adaptation, or a different task to measure transfer. Perturbations on adaptation trials varied over time as a sum of sinusoids with different frequencies. Fast learning would be expected to produce equal responses to fast and slow perturbations, while slower learning would dampen responses to higher frequency perturbations. Subjects were generally not aware of the smoothly varying perturbations, but showed detectable adaptation for all three tasks. Only pointing produced significantly different responses to high- and low-frequency perturbations, consistent with slow learning. Adaptation of pointing produced more transfer to the hand locomotion task, which shared the same effector and motor actions, than to the stepping task. The other tasks showed fast learning but little or no slow learning, and equal transfer to tasks with different effector or function. Our results suggest that the slower components of sensorimotor adaptation are more movement specific, while faster learning is more generalizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data reported in this paper are available at https://osf.io/t7z3c/.

References

Download references

Acknowledgements

This work was supported by a grant from the Hong Kong Research Grants Council, GRF 17407914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Saunders.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Saunders, J.A. Different generalization of fast and slow visuomotor adaptation across locomotion and pointing tasks. Exp Brain Res 239, 2859–2871 (2021). https://doi.org/10.1007/s00221-021-06112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-021-06112-w

Keywords

Navigation