Skip to main content
Log in

Representational momentum reveals visual anticipation differences in the upper and lower visual fields

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recent empirical research has revealed differences in functional capacity between the upper and lower visual fields (VFs), with the lower VF exhibiting superiority in visual perception skills. Similarly, functional differences between the left and right hemispheres elicit a predominance for visuospatial processing in the left visual field (left VF). Both anatomical as well as evolutionary arguments have been adopted in accounting for these variations in function. Preceding upper and lower VF research has typically investigated either static stimulus perception or the visual processing of upper limb action. The aim of the current research was to investigate whether the lower VF benefits associated with limb control transcend to visual anticipation (the perception of motion). Methods were based on Khan and Lawrence (Exp Brain Res 164:395–398, 2005), who investigated upper/lower VF differences in visuomotor control, but utilising a representational momentum paradigm to isolate perceptual processes. Thirty-two participants were randomised into either a left or right VF group and completed a perceptual computer-based task in the upper and lower VF, where they were required to judge the final position of a moving object before it disappeared. Two aspects of the distributions of same responses were then analysed; the central tendency (weighted means) and the variability. Results revealed that in the left VF, weighted means for the lower VF were significantly greater than for the upper VF [t(14) = 2.242, p = 0.042]. In both left and right VFs, variability was greater in the upper compared to lower VF. This provides new findings regarding visual processes in the different visual fields. While visual search and large scene perception has been found to be superior in the upper VF, here we find that visual anticipation, like target-directed visuomotor skill, is superior in the lower VF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. To verify these vertical and horizontal eye positions, participants viewed the fixation point through the 8-mm-diameter circular bore of a cylinder (25 mm diameter; 32 mm length) that was placed perpendicular against the monitor screen; adjustments to the chin/head rest were made until the fixation point appeared to the participant to be centred in the cylindrical bore.

  2. Hayes and Freyd (2002) have demonstrated in an RM paradigm that precision of responses about the central tendency decreases under dual task conditions. Other perceptual judgments, such as of colour, orientation, and static location, also become less precise under dual task conditions (e.g. Prinzmetal et al. 1998). It might be expected, then, that any differences in attentional deployment to the upper versus lower visual fields might be reflected in changes in the variability of the distributions of same responses.

  3. Following Prinzmetal and Wilson (1997), this measure of variability was used because it is more robust to violations of assumptions of analysis of variance than is the standard deviation (Keppel 1991, p. 102).

References

  • Berry MJ Jr, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338

    Article  CAS  PubMed  Google Scholar 

  • Blättler C, Ferrari V, Didierjean A, Elslande P, Marmèche E (2010) Can expertise modulate representational momentum? Vis Cognit 18(9):1253–1273

    Article  Google Scholar 

  • Carlsen AN, Maslovat D, Chua R, Franks IM (2007) Perceptual processing time differences owing to visual field asymmetries. Neuroreport Vis 18(10):1067–1070

    Article  Google Scholar 

  • Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comparative Neurol 300:5–25

    Article  CAS  Google Scholar 

  • Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–581

    Article  CAS  PubMed  Google Scholar 

  • Danckert J, Goodale M (2001) Superior performance for visually guided pointing in the lower visual field. Exp Brain Res 137:303–308

    Article  CAS  PubMed  Google Scholar 

  • Danckert J, Goodale M (2003) Ups and downs in the visual control of action. In: Johnson-Frey SH (ed) Taking action: cognitive neuroscience perspectives on intentional actions. MIT Press, Cambridge, Mass, pp 29–64

    Google Scholar 

  • Efron R, Yund E, Nichols D (1990) Detectability as function of target location: effects of spatial configuration. Brain Cognit 12:102–116

    Article  CAS  Google Scholar 

  • Fecteau JH, Enns JT, Kingstone A (2000) Competition-induced visual field differences in search. Psychol Sci 11(5):386–393

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Finke RA, Freyd JJ, Shyi GCW (1986) Implied velocity and acceleration induce transformations of visual memory. J Exp Psychol Gen 115:175–188

    Article  CAS  PubMed  Google Scholar 

  • Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132

    Article  Google Scholar 

  • Freyd JJ, Finke RA (1985) A velocity effect for representational momentum. Bull Psychon Soc 23(6):443–446

    Article  Google Scholar 

  • Freyd JJ, Jones KT (1994) Representational momentum for a spiral path. J Exp Psychol Learn Mem Cogn 20(4):968–976

    Article  CAS  PubMed  Google Scholar 

  • Freyd JJ, Pantzer TM (1995) Static patterns moving in the mind. In: Smith SM, Ward TB, Finke RA (eds) The creative cognition approach. MIT Press, Cambridge, MA, pp 181–204

    Google Scholar 

  • Freyd JJ, Pantzer TM, Chang JL (1988) Representing statics as forces in equilibrium. J Exp Psychol Gen 117:395–407

    Article  CAS  PubMed  Google Scholar 

  • Galati G, Lobel E, Vallar G, Berthoz A, Pizzamiglio L, Le Bihan D (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res 133:156–164

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Halpern AR, Kelly MH (1993) Memory biases in left versus right implied motion. J Exp Psychol Learn Mem Cogn 19:471–484

    Article  CAS  PubMed  Google Scholar 

  • Hayes AE, Freyd JJ (2002) Representational momentum when attention is divided. Vis Cognit 9:8–27

    Article  Google Scholar 

  • Heilman KM, Ven Den Abell T (1980) Right hemisphere dominance for attention. Neurology 30(3):327

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TL (2005) Representational momentum and related displacements in spatial memory: a review of the findings. Psychon Bull Rev 12(5):822–851

    Article  PubMed  Google Scholar 

  • Hubbard TL, Bharucha JJ (1988) Judged displacement in apparent vertical and horizontal motion. Percept Psychophys 44:211–221

    Article  CAS  PubMed  Google Scholar 

  • Hudson M, Burnett HG, Jellema T (2012) Anticipation of action intentions in autism spectrum disorder. J Autism Dev Disord 42:1684–1693

    Article  PubMed  Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Khan MA, Lawrence GP (2005) Differences in visuomotor control between the upper and lower visual fields. Exp Brain Res 164:395–398

    Article  PubMed  Google Scholar 

  • Khurana B, Nijhawan R (1995) Extrapolation or attention shift? Nature 378:565–566

    Article  Google Scholar 

  • Krigolson O, Heath M (2006) A lower visual field advantage for endpoint stability but no advantage for online movement precision. Exp Brain Res 170:127–135

    Article  PubMed  Google Scholar 

  • Lee B, Kaneoke Y, Kakigi R, Sakai Y (2009) Human brain response to visual stimulus between lower/upper visual fields and cerebral hemispheres. Int J Psychophysiol 74:81–87

    Article  PubMed  Google Scholar 

  • Lennie P (1981) The physiological basis of variations in visual latency. Vis Res 21:815–824

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski AS, Jakobson LS (2011) Representational momentum in older adults. Brain Cogn 77:106–112

    Article  PubMed  Google Scholar 

  • Previc F (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–575

    Article  Google Scholar 

  • Previc F, Blume J (1993) Visual search asymmetries in three-dimensional space. Vis Res 33:2697–2704

    Article  CAS  PubMed  Google Scholar 

  • Prinzmetal W, Wilson A (1997) The effect of attention on phenomenal length. Perception 26(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Prinzmetal W, Amiri H, Allen K, Edwards T (1998) Phenomenology of attention: 1. color, location, orientation, and spatial frequency. J Exp Psychol Hum Percept Perform 24(1):261–282

    Article  Google Scholar 

  • Reed CL, Vinson NG (1996) Conceptual effects on representational momentum. J Exp Psychol Hum Percept Perform 22(4):839–850

    Article  CAS  PubMed  Google Scholar 

  • Rubin N, Nakayama K, Shapley R (1996) Enhanced perception of illusory contours in the lower versus upper visual hemifields. Science 271(5249):651–653

    Article  CAS  PubMed  Google Scholar 

  • Shepard RN (1981) Phsychophysical complementarity. In: Kubovy M, Pomerantz JR (eds) Perceptual organisation. Erlbaum, Hillsdale, NJ, pp 279–341

    Google Scholar 

  • Taylor NM, Jakobson LS (2010) Representational momentum in children born preterm and at term. Brain Cogn 72:464–471

    Article  PubMed  Google Scholar 

  • Thornton IM, Hayes AE (2004) Anticipating action in complex scenes. Vis Cognit 11:341–370

    Article  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  CAS  PubMed  Google Scholar 

  • Verfaillie K, d’Ydewalle G (1991) Representational momentum and event course anticipation in the perception of implied periodical motions. J Exp Psychol Learn Mem Cogn 17(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • Vinson N, Reed CL (2002) Sources of object-specific effects in representational momentum. Visual Cognit 9(1/2):41–65

    Article  Google Scholar 

  • White H, Minor SW, Merrell J, Smith T (1993) Representational-momentum effects in the cerebral hemispheres. Brain Cogn 22(2):161–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria M. Gottwald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottwald, V.M., Lawrence, G.P., Hayes, A.E. et al. Representational momentum reveals visual anticipation differences in the upper and lower visual fields. Exp Brain Res 233, 2249–2256 (2015). https://doi.org/10.1007/s00221-015-4294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4294-9

Keywords

Navigation