Skip to main content
Log in

Human manual control performance in hyper-gravity

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G’s of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker JF, Perlmutter SI, Peterson BW, Rude SA, Robinson FR (1987) Simultaneous opposing adaptive-changes in cat vestibulo-ocular reflex direction for 2 body orientations. Exp Brain Res 69:220–224

    Article  CAS  PubMed  Google Scholar 

  • Batson CD, Brady RA, Peters BT, Ploutz-Snyder RJ, Mulavara AP, Cohen HS, Bloomberg JJ (2011) Gait training improves performance in healthy adults exposed to novel sensory discordant conditions. Exp Brain Res 209:515–524

    Article  PubMed  Google Scholar 

  • Bock O, Schneider S, Bloomberg J (2001) Conditions for interference versus facilitation during sequential sensorimotor adaptation. Exp Brain Res 138:359–365

    Article  CAS  PubMed  Google Scholar 

  • Bos JE, de Vries SC, van Emmerik ML, Groen EL (2010) The effect of internal and external fields of view on visually induced motion sickness. Appl Ergon 41:516–521

    Article  PubMed  Google Scholar 

  • Braithwaite M, Groh S, Alvarez E (1997) Spatial disorientation in U.S. army helicopter accidents: an update of the 1987–92 survey to include 1993–95. Report No. 97–13. U.S. Army Aeromedical Research Laboratory, Fort Rucker

    Google Scholar 

  • Brown EL, Hecht H, Young LR (2002) Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation. J Vestib Res 12:271–282

    PubMed  Google Scholar 

  • Chelette TL, Martin EJ, Albery WB (1995) The effect of head tilt on perception of self-orientation while in a greater than one G environment. J Vestib Res 5:1–17

    Article  CAS  PubMed  Google Scholar 

  • Clark TK (2013) Human perception and control of vehicle roll tilt in hyper-gravity. In: Aeronautics and astronautics, vol Ph.D. Massachusetts Institute of Technology, Cambridge, p 169

  • Clark TK, Newman MC, Merfeld DM, Young LR (2013) Pilot control and stabilization of a rate-controlled vehicle in hyper-gravity. In: IEEE aerospace conference, Big Sky, pp 1–8

  • Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2014) Human perceptual overestimation of whole-body roll tilt in hyper-gravity. J Neurophysiol. doi:10.1152/jn.00095.2014

  • Clement G, Wood SJ (2014) Rocking or rolling—perception of ambiguous motion after returning from space. PLoS One 9:e111107

    Article  PubMed Central  PubMed  Google Scholar 

  • Colenbrander A (1963) Eye and otoliths. Aeromed Acta 9:45–91

    PubMed  Google Scholar 

  • Correia MJ, Hixson WC, Niven JI (1968) On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol 230:1–20

    Article  Google Scholar 

  • Curry IP, McGhee JS (2007) Spatial disorientation as a cause of mishaps in combat helicopter operations. Aviat Space Environ Med 78(3):409

  • DiZio P, Lackner JR (2002) Sensorimotor aspects of high-speed artificial gravity III: sensorimotor adaptation. J Vestib Res 12:291–299

    PubMed  Google Scholar 

  • Fisk J, Lackner JR, Dizio P (1993) Gravitoinertial force level influences arm movement control. J Neurophysiol 69:504–511

    CAS  PubMed  Google Scholar 

  • Gillingham KK, Wolfe JW (1985) Spatial orientation in flight. In: De Hart RL (ed) Fundamental os aerospace medicine. Lea & Febiger, Philadelphia, pp 299–381

    Google Scholar 

  • Gilson RD, Guedry FE, Hixson WC, Niven JI (1973) Observations on perceived changes in aircraft attitude attending head movements made in a 2-g bank and turn. Aerosp Med 44:90–92

    CAS  PubMed  Google Scholar 

  • Glasauer S, Mittelstaedt H (1992) Determinants of orientation in microgravity. Acta Astronaut 27:1–9

    Article  CAS  PubMed  Google Scholar 

  • Golding JF (1998) Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res Bull 47:507–516

    Article  CAS  PubMed  Google Scholar 

  • Golding JF (2006) Predicting individual differences in motion sickness susceptibility by questionnaire. Pers Individ Dif 41:237–248

    Article  Google Scholar 

  • Gonshor A, Melvill Jones G (1976) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol Lond 256:381–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guedry FE (1974) Psychophysics of vestibular sensation. Handbook of sensory physiology. Springer, Berlin, pp 3–154

    Google Scholar 

  • Guedry FE, Rupert AH (1991) Steady-state and transient G-excess effects. Aviat Space Environ Med 62:252–253

    CAS  PubMed  Google Scholar 

  • Jarchow T, Young LR (2007) Adaptation to head movements during short radius centrifugation. Acta Astronaut 61:881–888

    Article  Google Scholar 

  • Knapp CJ, Johnson R (1996) F-16 class a mishaps in the US Air Force, 1975-93. Aviat Space Environ Med 67:777–783

    CAS  PubMed  Google Scholar 

  • Kurtzer I, DiZio PA, Lackner JR (2005) Adaptation to a novel multi-force environment. Exp Brain Res 164:120–132

    Article  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to coriolis-force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (2005) Motor control and learning in altered dynamic environments. Curr Opin Neurobiol 15:653–659

    Article  CAS  PubMed  Google Scholar 

  • McRuer D, Weir DH (1969) Theory of manual vehicular control. Ergonomics 12:599–633

    Article  CAS  PubMed  Google Scholar 

  • Merfeld DM (1996) Effect of spaceflight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2. J Appl Physiol 81:50–57

    CAS  PubMed  Google Scholar 

  • Merfeld DM (2003) Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res Equilib Orientat 13:309–320

    Google Scholar 

  • Miller EF, Graybiel A (1966) Magnitude of gravitoinertial force an independent variable in egocentric visual localization of horizontal. J Exp Psychol 71:452–460

    Article  PubMed  Google Scholar 

  • Mulavara AP, Cohen HS, Bloomberg JJ (2009) Critical features of training that facilitate adaptive generalization of over ground locomotion. Gait Posture 29:242–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Paloski WH, Oman CM, Bloomberg JJ, Reschke MF, Wood SJ, Harm DL, Peters BT, Mulavara AP, Locke JP, Stone LS (2008) Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J Gravit Physiol 15:1–29

    Google Scholar 

  • Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness—implications for preflight training. Aviat Space Environ Med 56:601–606

    CAS  PubMed  Google Scholar 

  • Roller CA, Cohen HS, Kimball KT, Bloomberg JJ (2001) Variable practice with lenses improves visuo-motor plasticity. Cogn Brain Res 12:341–352

    Article  CAS  Google Scholar 

  • Roller CA, Cohen HS, Bloomberg JJ, Mulavara AP (2009) Improvement of obstacle avoidance on a compliant surface during transfer to a novel visual task after variable practice under unusual visual conditions. Percept Mot Skills 108:173–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Roscoe AH (1984) Assessing pilot workload in flight. Royal aircraft establishment Bedford, England

  • Roscoe AH, Ellis GA (1990) A subjective rating scale for assessing pilot workload in flight: a decade of practical use. no. RAE-TR-90019. Royal aerospace establishment Farnborough, UK

  • Schone H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772

    Google Scholar 

  • Seidler RD (2004) Motor learning experiences enhance motor adaptability. J Cogn Neurosci 16:65–73

    Article  PubMed  Google Scholar 

  • Seidler RD (2005) Differential transfer processes in incremental visuomotor adaptation. Mot Control 9:40–58

    Google Scholar 

  • Shelhamer M, Clendaniel RA (2002) Context-specific adaptation of saccade gain. Exp Brain Res 146:441–450

    Article  PubMed  Google Scholar 

  • Shelhamer M, Clendaniel RA, Roberts DC (2002) Context-specific adaptation of saccade gain in parabolic flight. J Vestib Res Equilib Orientat 12:211–221

    Google Scholar 

  • Tribukait A, Eiken O (2005) Semicircular canal contribution to the perception of roll tilt during gondola centrifugation. Aviat Space Environ Med 76:940–946

    PubMed  Google Scholar 

  • Tribukait A, Eiken O (2006a) Roll-tilt perception during gondola centrifugation: influence of steady-state acceleration (G) level. Aviat Space Environ Med 77:695–703

    PubMed  Google Scholar 

  • Tribukait A, Eiken O (2006b) Semicircular canal influence on the visually perceived eye level during gondola centrifugation. Aviat Space Environ Med 77:500–508

    PubMed  Google Scholar 

  • Tribukait A, Eiken O (2012) Flight experience and the perception of pitch angular displacements in a gondola centrifuge. Aviat Space Environ Med 83:496–503

    Article  PubMed  Google Scholar 

  • Tribukait A, Gronkvist M, Eiken O (2011) The perception of roll tilt in pilots during a simulated coordinated turn in a gondola centrifuge. Aviat Space Environ Med 82:523–530

    Article  PubMed  Google Scholar 

  • Tribukait A, Bergsten E, Eiken O (2013) Variability in perceived tilt during a roll plane canal-otolith conflict in a gondola centrifuge. Aviat Space Environ Med 84:1131–1139

    Article  PubMed  Google Scholar 

  • Turnham EJA, Braun DA, Wolpert DM (2012) Facilitation of learning induced by both random and gradual visuomotor task variation. J Neurophysiol 107:1111–1122

    Article  PubMed Central  PubMed  Google Scholar 

  • Valko Y, Lewis RF, Priesol AJ, Merfeld DM (2012) Vestibular labyrinth contributions to human whole-body motion discrimination. J Neurosci 32:13537–13542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yakushin SB, Raphan T, Cohen B (2000) Context-specific adaptation of the vertical vestibuloocular reflex with regard to gravity. J Neurophysiol 84:3067–3071

    CAS  PubMed  Google Scholar 

  • Young LR (2003) Models for neurovestibular adaptation. J Vestib Res Equilib Orientat 13:297–307

    Google Scholar 

  • Young LR, Oman CM, Watt DGD, Money KE, Lichtenberg BK (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225:205–208

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Hecht H, Lyne LE, Sienko KH, Cheung CC, Kavelaars J (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronaut 49:215–226

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Sienko KH, Lyne LE, Hecht H, Natapoff A (2003) Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation. J Vestib ResEquilib Orientat 13:65–77

    Google Scholar 

Download references

Acknowledgments

We appreciate the participation of our anonymous subjects. We thank Caglar Unlu and Ebubekir Tipi for technical support, Amer Makhleh and Gregory Kennedy for assistance in data collection, Alan Natapoff for advice on statistics, Kevin Duda, Paul DiZio, and Faisal Karmali for reviewing a draft of this manuscript and helpful suggestions. This work was supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC9-58 (TKC, CMO, LRY) and via National Institute on Deafness and Other Communication Disorders (NIDCD)/National Institutes of Health (NIH) R01 DC04158 (DMM). We also thank Bill Mitchell and NASTAR Center for additional project support. Preliminary results and other aspects of the experiment were presented at the 2013 IEEE Aerospace Conference (Clark et al. 2013), as well as part of a doctoral thesis (Clark 2013). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torin K. Clark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, T.K., Newman, M.C., Merfeld, D.M. et al. Human manual control performance in hyper-gravity. Exp Brain Res 233, 1409–1420 (2015). https://doi.org/10.1007/s00221-015-4215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4215-y

Keywords

Navigation