Skip to main content
Log in

Implied motion perception from a still image in infancy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Visual motion perception can arise from non-directional visual stimuli, such as still images (implied motion, cf. Kourtzi, Trends Cogn Sci 8:47–49, 2004). We tested 5- to 8-month-old infants’ implied motion perception with two experiments using the forced-choice preferential looking method. Our results indicated that a still image of a person running toward either the left or right side significantly enhanced infants’ visual preference for a visual target that consistently appeared on the same side as the running direction (the run condition in Experiment 1). Such enhanced visual preference disappeared in response to an image of the same person standing and facing the left/right side (the stand condition in Experiment 1), an image of the running figure covered with a set of opaque rectangles (the block condition in Experiment 2) (Gervais et al. in Atten Percept Psychophys 72:1437–1443, 2010), and an image of the inverted running figure (the inversion condition in Experiment 3). These results suggest that only the figure that implied dynamic body motion shifted the infants’ visual preference to the same direction as the implied running action. These findings demonstrate that even infants as young as 5 to 8 months old are sensitive to the implied motion of static figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banton T, Dobkins K, Bertenthal BI (2001) Infant direction discrimination thresholds. Vision Res 41:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Bertenthal BI, Proffitt DR, Kramer SJ (1987) Perception of biomechanical motions by infants: implementation of various processing constraints. J Exp Psychol Hum Percept Perform 13:577–585

    Article  PubMed  CAS  Google Scholar 

  • Bonda E, Petrides M, Ostry D, Evans A (1996) Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci 16:3737–3744

    PubMed  CAS  Google Scholar 

  • Braddick O, Atkinson J (2007) Development of brain mechanisms for visual global processing and object segmentation. Prog Brain Res 164:151–168

    Article  PubMed  Google Scholar 

  • Brosseau-Lachaine O, Casanova C, Faubert J (2008) Infant sensitivity to radial optic flow fields during the first months of life. J Vis 8(4):5:1–14

  • Burr DC (1980) Motion smear. Nature 284:164

    Article  PubMed  CAS  Google Scholar 

  • Burr D (2000) Motion vision: are ‘speed lines’ used in human visual motion? Curr Biol 10:R440–R443

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Ross J (2002) Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22:8661–8664

    PubMed  CAS  Google Scholar 

  • Carello C, Rosenblum L, Grosofsky A (1986) Static depiction of movement. Perception 15:41–58

    Article  PubMed  CAS  Google Scholar 

  • Fawcett IP, Hillebrand A, Singh KD (2007) The temporal sequence of evoked and induced cortical responses to implied-motion processing in human motion area V5/MT+. Eur J Neurosci 26:775–783

    Article  PubMed  Google Scholar 

  • Fox R, McDaniel C (1982) The perception of biological motion by human infants. Science 218:486–487

    Article  PubMed  CAS  Google Scholar 

  • Francis G, Kim H (1999) Motion parallel to line orientation: disambiguation of motion percepts. Perception 28:1243–1256

    Article  PubMed  CAS  Google Scholar 

  • Friedman SL, Stevenson MB (1975) Developmental changes in the understanding of implied motion in two-dimensional pictures. Child Dev 46:773–778

    Article  PubMed  CAS  Google Scholar 

  • Gervais WM, Reed CL, Beall PM, Roberts RJ (2010) Implied body action directs spatial attention. Atten Percept Psychophys 72:1437–1443

    Article  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Oxford

    Google Scholar 

  • Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4:179–192

  • Glass L (1969) Moire effect from random dots. Nature 223:578–580

    Article  PubMed  CAS  Google Scholar 

  • Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720

    Article  PubMed  CAS  Google Scholar 

  • Harrington TL, Harrington MK, Wilkins CA, Koh YO (1980) Visual orientation by motion-produced blur patterns: detection of divergence. Percept Psychophys 28:293–305

    Article  PubMed  CAS  Google Scholar 

  • Hirai M, Hiraki K (2005) An event-related potentials study of biological motion perception in human infants. Cogn Brain Res 22:301–304

    Article  Google Scholar 

  • Imura T, Shirai N (submitted for publication) Early development of dynamic shape perception under slit-viewing conditions

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  • Kawabe T, Miura K (2006) Representation of dynamic events triggered by motion lines and static human postures. Exp Brain Res 175:372–375

    Article  PubMed  Google Scholar 

  • Kawabe T, Yamada Y, Miura K (2007) Memory displacement of an object with motion lines. Vis Cogn 15:305–321

    Article  Google Scholar 

  • Kourtzi Z (2004) But still, it moves. Trends Cogn Sci 8:47–49

    Article  PubMed  Google Scholar 

  • Kourtzi Z, Kanwisher N (2000) Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 12:48–55

    Article  PubMed  CAS  Google Scholar 

  • Kourtzi Z, Krekelberg B, van Wezel RJ (2008) Linking form and motion in the primate brain. Trends Cogn Sci 12:230–236

    Article  PubMed  Google Scholar 

  • Krekelberg B, Dannenberg S, Hoffmann KP, Bremmer F, Ross J (2003) Neural correlates of implied motion. Nature 424:674–677

    Article  PubMed  CAS  Google Scholar 

  • Krekelberg B, Vatakis A, Kourtzi Z (2005) Implied motion from form in the human visual cortex. J Neurophysiol 94:4373–4386

    Article  PubMed  Google Scholar 

  • Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Percept Psychophys 15:529–532

  • Lorteije JA, Kenemans JL, Jellema T, Van Der Lubbe RH, De Heer F, Van Wezel RJ (2006) Delayed response to animate implied motion in human motion processing areas. J Cogn Neurosci 18:158–168

    Article  PubMed  Google Scholar 

  • Lorteije JAM, Barraclough NE, Jellema T, Raemaekers M, Duijnhouwer J, Xiao D, Oram MW, Lankheet MJM, Perrett DI, van Wezell RJA (2011) Implied motion activation in cortical area MT can be explained by visual low-level features. J Cogn Neurosci 23:1533–1548

    Article  PubMed  Google Scholar 

  • Mundy P, Newell L (2007) Attention, joint attention, and social cognition. Curr Dir Psychol Sci 16:269–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama K (1985) Biological image motion processing: a review. Vision Res 25:625–660

    Article  PubMed  CAS  Google Scholar 

  • Otsuka Y, Konishi Y, Kanazawa S, Yamaguchi MK (2009) The effect of occlusion on motion integration in infants. J Exp Psychol Hum Percept Perform 35:72–82

    Article  PubMed  Google Scholar 

  • Parks TE (1965) Post-retinal visual storage. Am J Psychol 78:145–147

    Article  PubMed  CAS  Google Scholar 

  • Peirce JW (2009) Generating stimuli for neuroscience using PsychoPy. Front Neuroinform 2:10. doi:10.3389/neuro.11.010.2008

  • Ross J, Badcock DR, Hayes A (2000) Coherent global motion in the absence of coherent velocity signals. Curr Biol 10:679–682

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh GJ, Whiting HT, Bootsma RJ (1991) Grasping tau. J Exp Psychol Hum Percept Perform 17:315–322

    Article  PubMed  CAS  Google Scholar 

  • Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136:982–983

    Article  PubMed  CAS  Google Scholar 

  • Senior C, Barnes J, Giampietro V, Simmons A, Bullmore ET, Brammer M, David AS (2000) The functional neuroanatomy of implicit-motion perception or representational momentum. Curr Biol 10:16–22

    Article  PubMed  CAS  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2004a) Asymmetry for the perception of expansion/contraction in infancy. Infant Behav Dev 27:315–322

    Article  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2004b) Sensitivity to linear-speed-gradient of radial expansion flow in infancy. Vision Res 44:3111–3118

    Article  PubMed  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2006) Anisotropic motion coherence sensitivities to expansion/contraction motion in early infancy. Infant Behav Dev 29:204–209

    Article  PubMed  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2008) Early development of sensitivity to radial motion at different speeds. Exp Brain Res 185:461–467

    Article  PubMed  Google Scholar 

  • Shirai N, Birtles D, Wattam-Bell J, Yamaguchi MK, Kanazawa S, Atkinson J, Braddick O (2009) Asymmetrical cortical processing of radial expansion/contraction in infants and adults. Dev Sci 12:946–955

    Article  PubMed  Google Scholar 

  • Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA 105:809–813

  • Stekelenburg JJ, de Gelder B (2004) The neural correlates of perceiving human bodies: an ERP study on the body-inversion effect. NeuroReport 15:777–780

    Article  PubMed  Google Scholar 

  • Sumi S (1984) Upside-down presentation of the Johansson moving light-spot pattern. Perception 13:283–286

    Article  PubMed  CAS  Google Scholar 

  • Teller DY (1979) The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Infant Behav Dev 2:135–153

    Article  Google Scholar 

  • Valentine T (1988) Upside-down faces: a review of the effect of inversion upon face recognition. Br J Psychol 79:471–491

    Article  PubMed  Google Scholar 

  • Wattam-Bell J (1991) Development of motion-specific cortical responses in infancy. Vision Res 31:287–297

    Article  PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1996a) Visual motion processing in one-month-old infants: habituation experiments. Vision Res 36:1679–1685

    Article  PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1996b) Visual motion processing in one-month-old infants: preferential looking experiments. Vision Res 36:1671–1677

    Article  PubMed  CAS  Google Scholar 

  • Winawer J, Huk AC, Boroditsky L (2008) A motion aftereffect from still photographs depicting motion. Psychol Sci 19:276–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Grants-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (No. 26705009 to N.S.), a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (No. 23220006 to T.I.), and a Grant-in-Aid for Research Projects from Institute of Humanities, Social Sciences, and Education, Niigata University (to N.S.). We would like to thank the infants and their families for their participation and Naoki Furuhata, Erika Izumi, Yui Matsumura, Yuki Mori, Hinako Takayanagi, and Shunki Yuzawa for their assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobu Shirai or Tomoko Imura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirai, N., Imura, T. Implied motion perception from a still image in infancy. Exp Brain Res 232, 3079–3087 (2014). https://doi.org/10.1007/s00221-014-3996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3996-8

Keywords

Navigation