Skip to main content
Log in

The effects of attentional load on saccadic task switching

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Everyday life requires the ability to flexibly switch between tasks. Often, task switching is accompanied by concurrent cognitive activities that compete for limited attentional resources. This study aimed to characterize the effects of attentional load on task switching. In experiment 1, participants performed an interleaved pro-saccade and anti-saccade task. In experiment 2, participants performed an interleaved pro-saccade and anti-saccade task simultaneously with a rapid serial visual presentation task that has been shown to create an attentional load. Error rates and reaction times of pro-saccades and anti-saccades were analysed for both experiments separately and together. Overall, error rates and reaction times increased with attentional load. With attentional load, switches to pro-saccades were associated with increased error rates and reaction times, whereas switches to anti-saccades were only associated with increased error rates. We propose that attentional load interferes with neural task-set representation and that the resulting executive control is different for the dominant and non-dominant task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allport A, Styles E, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of tasks. In: Umiltà C, Moscovitch M (eds) Attention and performance XV. MIT Press, Cambridge, pp 421–452

    Google Scholar 

  • Baddeley A (2003) Working memory: looking forward and looking back. Nat Rev Neurosci 4:829–839

    Article  PubMed  CAS  Google Scholar 

  • Barton JJS, Greenzang C, Hefter R, Edelman J, Manoach DS (2006) Switching, plasticity, and prediction in a saccadic task-switch paradigm. Exp Brain Res 168:76–87

    Article  PubMed  Google Scholar 

  • Brass M, von Cramon Y (2002) The role of the frontal cortex in task preparation. Cereb Cortex 12:908–914

    Article  PubMed  Google Scholar 

  • Brown MR, Vilis T, Everling S (2007) Frontoparietal activation with preparation for antisaccades. J Neurophysiol 98:1751–1762

    Article  PubMed  Google Scholar 

  • Cherkasova MV, Manoach DS, Intriligator JM, Barton JJS (2002) Antisaccades and task-switching: interactions in controlled processing. Exp Brain Res 144:528–537

    Article  PubMed  Google Scholar 

  • Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281

    Article  PubMed  Google Scholar 

  • DeSouza JFX, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. J Neurophysiol 89:1016–1023

    Article  PubMed  Google Scholar 

  • Dorris MC, Paré M, Munoz DP (2000) Immediate neural plasticity shapes motor performance. J Neurosci 20:RC52

    PubMed  CAS  Google Scholar 

  • Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, Kramer AF (2005) Neural correlates of dual-task performance after minimizing task-preparation. Neuroimage 28:967–979

    Article  PubMed  Google Scholar 

  • Everling S, DeSouza JFX (2005) Rule-dependent activity for prosaccades and antisaccades in the primate prefrontal cortex. J Cogn Neurosci 17:1483–1496

    Article  PubMed  Google Scholar 

  • Fecteau JH, Munoz DP (2003) Exploring the consequences of the previous trial. Nat Rev Neurosci 4:435–443

    Article  PubMed  CAS  Google Scholar 

  • Filevich E, Kühn S, Haggard P (2012) Intentional inhibition in human action: the power of ‘no’. Neurosci Biobehav Rev 36:1107–1118

    Article  PubMed  Google Scholar 

  • Ford KA, Goltz HC, Brown MR, Everling S (2005) Neural processes associated with antisaccade task performance investigated with event-related FMRI. J Neurophysiol 94:429–440

    Article  PubMed  Google Scholar 

  • Fuster JM (2008) The prefrontal cortex. Academic Press, London

    Google Scholar 

  • Goldman PS, Nauta WJ (1976) Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res 116:145–149

    Article  PubMed  CAS  Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472

    Article  PubMed  CAS  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18:1279–1296

    Article  PubMed  CAS  Google Scholar 

  • Johnston K, Everling S (2006) Monkey dorsolateral prefrontal cortex sends task-selective signals directly to the superior colliculus. J Neurosci 26:12471–12478

    Article  PubMed  CAS  Google Scholar 

  • Johnston K, Levin HM, Koval MJ, Everling S (2007) Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53:453–462

    Article  PubMed  CAS  Google Scholar 

  • Johnston K, DeSouza JFX, Everling S (2009) Monkey prefrontal cortical pyramidal and putative interneurons exhibit differential patterns of activity between prosaccade and antisaccade tasks. J Neurosci 29:5516–5524

    Article  PubMed  CAS  Google Scholar 

  • Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in preattentive feature search task. Nature 387:805–807

    Article  PubMed  CAS  Google Scholar 

  • Klingberg T (2000) Limitations in information processing in the human brain: neuroimaging of dual task performance and working memory tasks. Prog Brain Res 126:95–102

    Article  PubMed  CAS  Google Scholar 

  • Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JP, Macrae CN, Gilchrist ID (2002) Working memory and the suppression of reflexive saccades. J Cogn Neurosci 14:95–103

    Article  PubMed  Google Scholar 

  • Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21:7733–7741

    PubMed  CAS  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7:134–140

    Article  PubMed  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  PubMed  CAS  Google Scholar 

  • Pashler H (1994) Dual task interference in simple tasks: data and theory. Psychol Bull 116:220–244

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually-guided saccades. Brain 114:1473–1485

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Müri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S (2003) Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126:1460–1473

    Article  PubMed  CAS  Google Scholar 

  • Ploner CJ, Gaymard BM, Rivaud-Péchoux S, Pierrot-Deseilligny C (2005) The prefrontal substrate of reflexive saccade inhibition in humans. Biol Psychiatry 57:1159–1165

    Article  PubMed  Google Scholar 

  • Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18:849–860

    Article  PubMed  CAS  Google Scholar 

  • Repovš G, Baddeley A (2006) The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience 139:5–21

    Article  PubMed  Google Scholar 

  • Roberts RJ, Hager LD, Heron C (1994) Prefrontal cognitive processes: working memory and inhibition in the antisaccade task. J Exp Psychol Gen 123:374–393

    Article  Google Scholar 

  • Sakai K (2008) Task set and prefrontal cortex. Annu Rev Neurosci 31:219–245

    Article  PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    PubMed  CAS  Google Scholar 

  • Stuss DT, Shallice T, Alexander MP, Picton TW (1995) A multidisciplinary approach to anterior attentional function. Ann NY Acad Sci 769:191–211

    Article  PubMed  CAS  Google Scholar 

  • Stuyven E, Van der Goten K, Vandierendonck A, Claeys K, Crevits L (2000) The effect of cognitive load on saccadic eye movements. Acta Psychol 104:69–85

    Article  CAS  Google Scholar 

  • Yeung N, Nystrom LE, Aronson JA, Cohen JD (2006) Between-task competition and cognitive control in task switching. J Neurosci 26:1429–1438

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kari Hoffman for technical support. This research was supported by funding from the Faculty of Health, York University, and the Natural Sciences and Engineering Research Council of Canada (NSERC) to JFXD. JLC was funded by a NSERC USRA and is currently funded by a scholarship from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. X. DeSouza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J.L., DeSouza, J.F.X. The effects of attentional load on saccadic task switching. Exp Brain Res 227, 301–309 (2013). https://doi.org/10.1007/s00221-013-3452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3452-1

Keywords

Navigation