Skip to main content
Log in

Components of the neural signal underlying congenital nystagmus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Congenital nystagmus is an involuntary bilateral horizontal oscillation of the eyes that develops soon after birth. In this study, the time constants of each of the components of the neural signal underlying congenital nystagmus were obtained by time series analysis and interpreted by comparison with those of the normal oculomotor system. In the neighbourhood of the fixation position, the system generating the neural signal is approximately linear with 3 degrees of freedom. The shortest time constant was in the range of 7–9 ms and corresponds to a normal saccadic burst signal. The other stable time constant was in the range of 22–70 ms and corresponds to the slide signal. The final time constant characterises the unidentified neural mechanism underlying the unstable drift component of the oscillation cycle and ranges between 31 and 32 ms across waveforms. The characterisation of this unstable time constant poses a challenge for the modelling of both the normal and abnormal oculomotor control system. We tentatively identify the unstable component with the eye position signal supplied to the superior colliculus in the normal eye movement system and explore some of the implications of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadi RV, Bjerre A (2002) Motor and sensory characteristics of infantile nystagmus. Br J Ophthalmol 86:1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Abadi RV, Dickinson CM (1986) Waveform characteristics in congenital nystagmus. Doc Ophthalmol 64:153–167

    Article  PubMed  CAS  Google Scholar 

  • Abadi RV, Broomhead DS, Clement RA, Whittle JP, Worfolk R (1997) Dynamical systems analysis: a new method of analysing congenital nystagmus waveforms. Exp Brain Res 117:355–361

    Article  PubMed  CAS  Google Scholar 

  • Akman OE, Broomhead DS, Abadi RV, Clement RA (2005) Eye movement instabilities and congenital nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. J Math Biol 51:661–694

    Article  PubMed  CAS  Google Scholar 

  • Akman OE, Broomhead DS, Clement RA, Abadi RV (2006) Nonlinear time series analysis of jerk congenital nystagmus. J Comput Neurosci 21:153–170

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE (2011) The oculomotor plant and its role in 3D eye orientation. In: Liversedge SP, Gilchrist ID, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 135–150

    Google Scholar 

  • Barreiro AK, Bronski JC, Anastasio TJ (2009) Bifurcation theory explains waveform variability in a congenital eye movement disorder. J Comput Neurosci 26:321–329

    Article  PubMed  Google Scholar 

  • Becker W, Klein HM (1972) Accuracy of saccadic eye movements and maintenance of eccentric eye positions in the dark. Vision Res 13:1021–1034

    Article  Google Scholar 

  • Broomhead DS, Jones R (1989) Time series analysis. Proc R Soc Lond A 423:103–121

    Article  Google Scholar 

  • Carpenter RHS (1988) Movements of the eyes, 2nd edn. Pion, London

    Google Scholar 

  • Clement RA (1993) Introduction to vision science. Lawrence Erlbaum Associates, Hove

    Google Scholar 

  • Dell’Osso LF, Daroff RB (1975) Congenital nystagmus waveforms and foveation strategy. Doc Ophthalmol 39:155–182

    Article  PubMed  Google Scholar 

  • Gandhi NJ, Katnani HA (2011) Motor functions of the superior colliculus. Annu Rev Neurosci 34:205–231

    Article  PubMed  CAS  Google Scholar 

  • Goldstein HP (1987) Modelling post-saccadic drift: dynamic overshoot may be passive. In: Foster KR (ed) Proceeding Thirteenth Annu Northeast Bioeng Conf Philadelphia, pp 245–248

  • Goossens HH, Van Opstal AJ (2006) Dynamic ensemble coding of saccades in the monkey superior colliculus. J Neurophysiol 95:2326–2341

    Article  PubMed  CAS  Google Scholar 

  • Groh J (2011) Effects of initial eye position on saccades evoked by microstimulation in the primate superior colliculus: implications for models of the SC read-out process. Front Integr Neurosci 4:130

    Article  PubMed  Google Scholar 

  • Hafed ZM, Goffart L, Krauzlis RJ (2008) Superior colliculus inactivation causes stable offsets in eye position during tracking. J Neurosci 28:8124–8137

    Article  PubMed  CAS  Google Scholar 

  • Harris CM (1995) Problems in modelling congenital nystagmus: towards a new model. In: Findlay JM, Walker R, Kentridge RW (eds) Eye movement research: mechanisms, processes and applications. Elsevier, Amsterdam, pp 239–253

    Chapter  Google Scholar 

  • Harris CM (1998) The Fourier analysis of biological transients. J Neurosci Methods 83:15–34

    Article  PubMed  CAS  Google Scholar 

  • Healey JJ, Broomhead DS, Cliffe KA, Jones R, Mullin T (1991) The origins of chaos in a modified Van der Pol oscillator. Physica D 48:322–339

    Article  Google Scholar 

  • Huang YY, Rinner O, Hedinger P, Liu SC, Neuhauss SC (2006) Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting. J Neurosci 27:9873–9880

    Article  Google Scholar 

  • Jacobs JB, Dell’Osso LF (2004) Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. J Vis 4:604–625

    Article  PubMed  Google Scholar 

  • Krauzlis RJ (2000) Population coding of movement dynamics by cerebellar Purkinje cells. NeuroReport 11:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Optican LM, Miles FA (1985) Visually induced adaptive changes in primate saccadic oculomotor control signals. J Neurophysiol 54:940–958

    PubMed  CAS  Google Scholar 

  • Optican LM, Zee DS (1984) A hypothetical explanation of congenital nystagmus. Biol Cybern 50:119–134

    Article  PubMed  CAS  Google Scholar 

  • Optican LM, Zee DS, Miles FA (1986) Floccular lesions abolish adaptive control of post-saccadic ocular drift in primates. Exp Brain Res 64:596–598

    Article  PubMed  CAS  Google Scholar 

  • Ott E, Sauer T, Yorke JA (1994) Coping with chaos. Wiley, New York

    Google Scholar 

  • Quaia C, Ying HS, Nichols AM, Optican LM (2009a) The viscoelastic properties of passive eye muscle in primates. I: static forces and step responses. PLoS ONE 4:e4850

    Article  PubMed  Google Scholar 

  • Quaia C, Ying HS, Optican LM (2009b) The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory. PLoS ONE 4:e6480

    Article  PubMed  Google Scholar 

  • Quaia C, Ying HS, Optican LM (2010) The viscoelastic properties of passive eye muscle in primates. III: force elicited by natural elongations. PLoS ONE 5:e9595

    Article  PubMed  Google Scholar 

  • Robinson DA (1968) Eye movement control in primates. Science 161:1219–1224

    Article  PubMed  CAS  Google Scholar 

  • Shelhamer M (2007) Nonlinear dynamics in physiology: a state space approach. World Scientific, Singapore

    Google Scholar 

  • Sklavos S, Porrill J, Kaneko CR, Dean P (2005) Evidence for a wide range of time scales in oculomotor plant dynamics: implications for models of eye-movement control. Vision Res 45:1525–1542

    Article  PubMed  Google Scholar 

  • Slotine JJ, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14:137–145

    Article  PubMed  CAS  Google Scholar 

  • So P, Ott E, Sauer T, Gluckman BJ, Grebogi C, Schiff SJ (1997) Extracting unstable periodic orbits from chaotic time series data. Phys Rev E 55:5398–5417

    Article  CAS  Google Scholar 

  • Theodorou M, Clement RA (2007) Fixed point analysis of nystagmus. J Neurosci Methods 161:134–141

    Article  PubMed  Google Scholar 

  • Van Opstal AJ, Van Gisbergen JA, Eggermont JJ (1985) Reconstruction of neural control signals for saccades based on an inverse method. Vision Res 25:789–801

    Article  PubMed  Google Scholar 

  • Wang ZI, Dell’Osso LF (2011) A unifying model-based hypothesis for the diverse waveforms of infantile nystagmus syndrome. J Eye Mov Res 4:1–18

    Google Scholar 

Download references

Acknowledgments

O. E. A was supported by a grant from the Engineering and Physical Sciences Research Council. R. V. A and D. S. B were supported by a grant (MMI 09774) from the Biotechnology and Biological Sciences Research Council. R. V. A. was also supported by a Science Foundation Ireland Walton Grant (07/W.I/B1820). R. A. C was supported by a grant from the British Eye Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur E. Akman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akman, O.E., Broomhead, D.S., Abadi, R.V. et al. Components of the neural signal underlying congenital nystagmus. Exp Brain Res 220, 213–221 (2012). https://doi.org/10.1007/s00221-012-3130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3130-8

Keywords

Navigation