Skip to main content
Log in

Hypnotizability-dependent modulation of postural control: effects of alteration of the visual and leg proprioceptive inputs

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The aim of the experiment was to investigate whether the peculiar attentional/imagery abilities associated with susceptibility to hypnosis might make postural control in highly hypnotizable subjects (Highs) that are less vulnerable to sensory alteration than in individuals with low hypnotic susceptibility (Lows). The movement of the centre of pression (CoP) was monitored in Highs and Lows during alteration of the visual and leg proprioceptive input. The two groups responded differently to eyes closure and to an unstable support and the CoP movement was generally larger and faster in Highs. The stabilogram diffusion analysis indicated a different set point in Highs and Lows and suggested that the former are more independent of specific sensory information than the latter, likely due to different abilities in sensory re-weighting and/or peculiar internal models of postural control. The results are discussed within the general perspective of high pervasiveness of the hypnotizability trait, which modulates cognitive, autonomic and somatic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adkin AL, Frank JS, Carpenter Peysar GW (2002) Fear of falling modifies anticipatory postural control. Exp Brain Res 143:160–170

    Article  PubMed  Google Scholar 

  • Agargun M, Tekeoglu I, Kara H, Adak B, Ercan M (1998) Hypnotizability, pain threshold, and dissociative experiences. Biol Psychiatry 44:69–71

    Article  PubMed  CAS  Google Scholar 

  • Balocchi R, Varanini M, Menicucci D, Santarcangelo EL, Migliorini S, Fontani Carli G (2005) Heart rate variability in subjects with different hypnotic susceptibility receiving nociceptive stimulation and suggestions of analgesia. Conf Proc IEEE Eng Med Biol Soc 7:6996–6999

    PubMed  CAS  Google Scholar 

  • Carli G, Rendo CA, Sebastiani L, Santarcangelo EL (2006) Suggestions of altered balance: possible equivalence of imagery and perception. Int J Clin Exp Hypn 54:206–223

    Article  PubMed  Google Scholar 

  • Carli G, Cavallaro FI, Rendo CA, Santarcangelo EL (2007a) Imagery of different sensory modalities: hypnotizability and body sway. Exp Brain Res 179:147–154

    Article  PubMed  CAS  Google Scholar 

  • Carli G, Cavallaro FI, Santarcangelo EL (2007b) Hypnotisability and imagery modality preference: do Highs and Lows live in the same world? Contemp Hypn 24:64–75

    Article  Google Scholar 

  • Carli G, Manzoni D, Santarcangelo EL (2008) Hypnotizability-related integration of perception and action. Cogn Neuropsychol. doi:10.1080/02643290801913712

  • Carpenter MG, Adkin AL, Brawley LR, Frank JS (2006) Postural physiological and psychological reactions to challenging balance: does age make a difference? Age Ageing 35:298–303

    Article  PubMed  Google Scholar 

  • Castellani E, D’Alessandro L, Sebastiani L (2007) Hypnotizability and spatial attentional functions. Arch Ital Biol 154:23–37

    Google Scholar 

  • Caudron S, Boy F, Forestier N, Guerraz M (2008) Influence of expectation on postural disturbance evoked by proprioceptive stimulation. Exp Brain Res 84:53–59

    Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of centre-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Egner T, Jamieson G, Gruzelier J (2005) Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. Neuroimage 27:969–978

    Article  PubMed  Google Scholar 

  • Gage WH, Winter DA, Frank JS, Adkin AL (2004) Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 19:124–132

    Article  PubMed  Google Scholar 

  • Green JP, Barabasz AF, Barrett D, Montgomery GH (2005) Forging ahead: the 2003 APA Division 30 definition of hypnosis. Int J Clin Exp Hypn 53:259–264

    Article  PubMed  Google Scholar 

  • Haibach PS, Slobounov SM, Slobounova ES, Newell KM (2007) Virtual time-to-contact of postural stability boundaries as a function of support surface compliance. Exp Brain Res 177:471–482

    Article  PubMed  Google Scholar 

  • Horak FB, Hlavacka F (2001) Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol 86:575–585

    PubMed  CAS  Google Scholar 

  • Horak FB, Kuo A (2000) Postural adaptation for altered environments, tasks and intentions. In: Winters J, Crago P (eds) Biomechanics and neural control of posture and movement. Springer, Berlin, pp 267–281

    Google Scholar 

  • Horak FB, McPherson M (1996) Postural orientation and equilibrium. In: Rothwell L, Shepherd J (eds) Handbook of physiology. Oxford University Press, New York

    Google Scholar 

  • Isableau B, Vuillerme N (2006) Differential integration of kinaesthetic signals to postural control. Exp Brain Res 174:763–768

    Article  Google Scholar 

  • Jacobs JV, Horak FB (2007) Cortical control of postural responses. J Neural Transm 114:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Jambrik Z, Santarcangelo EL, Ghelarducci B, Picano E, Sebastiani L (2004) Does hypnotisability modulate the stress-related endothelial dysfunction. Brain Res Bull 63:213–221

    Article  PubMed  Google Scholar 

  • Jambrik Z, Carli G, Rudish T, Varga A, Forster T, Santarcangelo EL (2005) Modulation of pain-induced endothelial dysfunction by hypnotisability. Pain 116:181–186

    Article  PubMed  Google Scholar 

  • Jamieson GA, Sheehan PW (2002) A critical evaluation of the relationship between sustained attentional abilities and hypnotic susceptibility. Contemp Hypn 19:62–75

    Article  Google Scholar 

  • Jamieson GA, Sheehan PW (2004) An empirical test of Woody and Bowers’s dissociated control theory of hypnosis. Int J Clin Exp Hypn 52:232–249

    Article  PubMed  Google Scholar 

  • Jeka J, Kiemel T, Horak F, Peterka R (2004) Controlling human upright posture: velocity information is more accurate than position or acceleration. J Neurophysiol 92:2368–2379

    Article  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129:723–746

    Article  PubMed  Google Scholar 

  • Laufer Y, Barak Y, Chemel I (2006) Age-related differences in the effect of a perceived threat to stability on postural control. J Gerontol 61:500–504

    Google Scholar 

  • Lichtenberg P, Bachner-Melman R, Ebsteirn RP, Crawford HJ (2004) Hypnotic susceptibility: multidimensional relationships with Cloninger’s tridimensional personality Questionnaire, COMT polymorphisms, absorption, and attentional characteristics. Int J Clin Exp Hypn 52:47–72

    Article  PubMed  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005) Human posturaòl sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564:295–311

    Article  PubMed  CAS  Google Scholar 

  • Mergner T (2002) The Matryoshka Dolls principle in human dynamic behavior in space: a theory of linked references for multisensory integration and control of action. In: Vercher J, Semmlow LL, Gauthier GM (eds) Cahiers de Psychologie Cognitive/Curr Psychol Cogn, vol 21. ADRSC, Marseille, pp 129–212

    Google Scholar 

  • Newell KM, Slobounov SM, Slobounova ES, Molenaar PCM (1997) Stochastic processes in postural center-of-pressure profiles. Exp Brain Res 113:158–164

    Article  PubMed  CAS  Google Scholar 

  • Nordby H, Hugdahl K, Jasiukaitis P, Spiegel D (1999) Effects of hypnotizability on performance of a Stroop task and event-related potentials. Percept Mot Skills 88:819–830

    Article  PubMed  CAS  Google Scholar 

  • Norman DA, Shallice T (1986) Attention to action. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and Self-regulation. Plenum Press, New York, pp 1–18

    Google Scholar 

  • Ogata K (2002) Modern control engineering. Prentice Hall International, Upper Saddle River, New York

    Google Scholar 

  • Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern 82:335–343

    Article  PubMed  CAS  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Posner MI, Fan J (2004) Attention as an organ system. In: Pomerantz JR, Craig MC (eds) Topics in integrative neuroscience: from cells to cognition. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Raymakers JA, Samson MM, Verhaar HJJ (2005) The assessment of body sway and the choice of the stability parameter(s). Gait Posture 21:48–58

    Article  PubMed  CAS  Google Scholar 

  • Redfern MS, Furman JM, Jacob RG (2007) Visually induced postural sway in anxiety disorders. J Anxiety Disord 21:704–716

    Article  PubMed  Google Scholar 

  • Riley MA, Mitra S, Stoffregen TA, Turvey MT (1997a) Influences of body lean and vision on postural fluctuations in stance. Motor Control 1:229–246

    Google Scholar 

  • Riley MA, Wong S, Mitra S, Turvey MT (1997b) Common effects of touch and vision on postural parameters. Exp Brain Res 117:165–170

    Article  PubMed  CAS  Google Scholar 

  • Rubichi S, Ricci F, Padovani R, Scaglietti L (2005) Hypnotic susceptibility, baseline attentional functioning, and the Stroop task. Conscious Cogn 14:296–303

    Article  PubMed  Google Scholar 

  • Santarcangelo EL, Sebastiani L (2004) Hypnotizability as an adaptive trait. Contemp Hypn 21:3–13

    Article  Google Scholar 

  • Santarcangelo EL, Busse K, Carli G (1989) Changes in electromyographically recorded human monosynaptic reflex in relation to hypnotic susceptibility and hypnosis. Neurosci Lett 104:157–160

    Article  PubMed  CAS  Google Scholar 

  • Santarcangelo EL, Busse K, Carli G (2003) Frequency of occurrence of the F wave in distal flexor muscles as a function of hypnotic susceptibility and hypnosis. Brain Res Cogn Brain Res 16:99–103

    Article  PubMed  Google Scholar 

  • Santarcangelo EL, Rendo C, Carpaneto J, Dario P, Micera S, Carli G (2004) Does hypnotizability affect human upright stance? Arch Ital Biol 142:285–296

    PubMed  CAS  Google Scholar 

  • Santarcangelo EL, Scattina E, Orsini P, Bruschini L, Ghelarducci B, Manzoni D (2008a) Effects of vestibular and neck proprioceptive stimulation on posture as a function of hypnotizability. Int J Clin Exp Hypn 56:170–184

    Article  PubMed  Google Scholar 

  • Santarcangelo EL, Balocchi R, Scattina E, Manzoni D, Bruschini L, Ghelarducci B, Varanini M (2008b) Hypnotizability-dependent modulation of the changes in heart rate control induced by upright stance. Brain Res Bull 75:692–697

    Article  PubMed  Google Scholar 

  • Schieppati M, Tacchini E, Nardone A, Tarantola J, Corna S (1999) Subjective perception of body sway. J Neurol Neurosurg Psychiatry 66:313–322

    Article  PubMed  CAS  Google Scholar 

  • Spiegel D (2003) Negative and positive visual hypnotic hallucinations: attending inside and out. Int J Clin Exp Hypn 51:130–146

    Article  PubMed  Google Scholar 

  • Tellegen A, Atkinson G (1974) Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. J Abnorm Psychol 83:268–277

    Article  PubMed  CAS  Google Scholar 

  • Vuillerme N, Nougier V (2004) Attentional demand for regulating postural sway: the effect in gymnastics. Brain Res Bull 63:161–165

    Article  PubMed  Google Scholar 

  • Weitzenhoffer AM (1997) Hypnotic susceptibility: a personal and historical note regarding the development and naming of the Stanford Scales. Int J Clin Exp Hypn 45:126–143

    Article  PubMed  CAS  Google Scholar 

  • Weitzenhoffer AM, Hilgard ER (1962) Stanford Hypnotic Susceptibility Scale, form C. Consulting Psychologist Press, Palo Alto, CA

    Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural netw 8:1265–1279

    Google Scholar 

  • Gauthier G, Thouvarecq R, Vuillerme N (2008) Postural control and perceptive configuration: influence of expertise in gymnastics. Gait Posture 28(1):46–51 (PMID: 17976990)

    Article  Google Scholar 

  • Hauck LJ, Carpenter MG, Frank JS (2008) Task specific measures of balance efficacy, anxiety, and stability and their relationship to clinical balance performance. Gait Posture 27(4):676–682 (PMID:17942311)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was funded by the Italian Space Agency (ASI-DCMC project). We are grateful to Dr. P. Christie for revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Laura Santarcangelo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 16 kb)

ESM2 (PDF 15 kb)

ESM3 (PDF 14 kb)

ESM4 (PDF 14 kb)

ESM5 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santarcangelo, E.L., Scattina, E., Carli, G. et al. Hypnotizability-dependent modulation of postural control: effects of alteration of the visual and leg proprioceptive inputs. Exp Brain Res 191, 331–340 (2008). https://doi.org/10.1007/s00221-008-1526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1526-2

Keywords

Navigation