Skip to main content
Log in

Interaction of paired cortical and peripheral nerve stimulation on human motor neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10–25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50–60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10

    Article  PubMed  Google Scholar 

  • Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    PubMed  CAS  Google Scholar 

  • Chen XY, Wolpaw JR, Jakeman LB, Stokes BT (1999) Operant conditioning of H-reflex increase in spinal cord-injured rats. J Neurotrauma 16:175–186

    PubMed  CAS  Google Scholar 

  • Curtis DR, Eccles JC (1960) Synaptic action during and after repetitive stimulation. J Physiol 150:374–398

    PubMed  CAS  Google Scholar 

  • Darling WG, Wolf SL, Butler AJ (2006) Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res 174:376–385

    Article  PubMed  Google Scholar 

  • Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    PubMed  CAS  Google Scholar 

  • Deletis V, Schild JH, Beric A, Dimitrijevic MR (1992) Facilitation of motor evoked potentials by somatosensory afferent stimulation. Electroencephalogr Clin Neurophysiol 85:302–310

    Article  PubMed  CAS  Google Scholar 

  • Deuschl G, Michels R, Berardelli A, Schenck E, Inghilleri M, Lucking CH (1991) Effects of electric and magnetic transcranial stimulation on long latency reflexes. Exp Brain Res 83:403–410

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Dileone M, Pilato F, Profice P, Ranieri F, Musumeci G, Angelucci F, Sabatelli M, Tonali PA (2006) Repetitive transcranial magnetic stimulation for ALS. A preliminary controlled study. Neurosci Lett 408:135–140

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann P (1918) Ueber die Beziehungen der Sehnenreflexe zur willkuerlichen Bewegung und zum Tonus. Zeitschrift fuer Biologie 68:351–370

    Google Scholar 

  • Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H (1996) On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res 108:450–462

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Baker SN, Fetz EE (2006) Tests for presynaptic modulation of corticospinal terminals from peripheral afferents and pyramidal tract in the macaque. J Physiol 573:107–120

    Article  PubMed  CAS  Google Scholar 

  • Kernell D (1965) The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiol Scand 65:67–100

    Google Scholar 

  • Khaslavskaia S, Sinkjaer T (2005) Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res 162:497–502

    Article  PubMed  Google Scholar 

  • Khaslavskaia S, Ladouceur M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145:309–315

    Article  PubMed  Google Scholar 

  • Knash ME, Kido A, Gorassini M, Chan KM, Stein RB (2003) Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of motor-evoked potentials. Exp Brain Res 221:366–377

    Article  Google Scholar 

  • Kujirai T, Caramia M, Rothwell J, Day B, Thompson P, Ferbert A, Wroe S, Asselman P, Marsden C (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Kujirai K, Kujirai T, Sinkjaer T, Rothwell JC (2006) Associative plasticity in human motor cortex during voluntary muscle contraction. J Neurophysiol 96:1337–1346

    Article  PubMed  Google Scholar 

  • Matthews PB (1996) Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J Physiol 492:597–628

    PubMed  CAS  Google Scholar 

  • McPhedran AM, Wuerker RB, Henneman E (1965) Properties of motor units in a homogeneous red muscle (soleus) of the cat. J Neurophysiol 28:71–84

    PubMed  CAS  Google Scholar 

  • Morita H, Baumgarten J, Petersen N, Christensen LO, Nielsen J (1999) Recruitment of extensor-carpi-radialis motor units by transcranial magnetic stimulation and radial-nerve stimulation in human subjects. Exp Brain Res 128:557–562

    Article  PubMed  CAS  Google Scholar 

  • Mrachacz-Kersting N, Fong M, Murphy BA, Sinkjaer T (2007) Changes in excitability of the cortical projections to the human tibialis anterior after paired associative stimulation. J Neurophysiol 97:1951–1958

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498:817–823

    PubMed  CAS  Google Scholar 

  • Nielsen J, Petersen N, Deuschl G, Ballegaard M (1993) Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J Physiol 471:223–243

    PubMed  CAS  Google Scholar 

  • Petersen N, Christensen LO, Morita H, Sinkjaer T, Nielsen J (1998) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol 512:267–276

    Article  PubMed  CAS  Google Scholar 

  • Petersen N, Taylor JL, Gandevia SC (2002) The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J Physiol 544:277–284

    Article  PubMed  CAS  Google Scholar 

  • Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152:1–16

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The Circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge University Press

  • Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351

    Article  PubMed  CAS  Google Scholar 

  • Rossi-Durand C, Jones KE, Adams S, Bawa P (1999) Comparison of the depression of H-reflexes following previous activation in upper and lower limb muscles in human subjects. Exp Brain Res 126:117–127

    Article  PubMed  CAS  Google Scholar 

  • Roy FD, Norton JA, Gorassini MA (2007) Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity. J Neurophysiol 98:657–667

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  PubMed  CAS  Google Scholar 

  • Stein R, Thompson A (2006) Muscle reflexes in motion: how, what and why? Exerc Sport Sci Rev 34:145–153

    Article  PubMed  Google Scholar 

  • Stein RB, Chong S, Everaert DG, Rolf R, Thompson AK, Whittaker M, Robertson J, Fung J, Preuss R, Momose K, Ihashi K (2006) A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair 20:371–379

    Article  PubMed  Google Scholar 

  • Stein RB, Everaert DG, Chong S, Thompson AK (2007) Using FES for foot drop strengthens cortico-spinal connections. 12th Annual Conference International FES Society

  • Stokic DS, McKay WB, Scott L, Sherwood AM, Dimitrijevic MR (1997) Intracortical inhibition of lower limb motor-evoked potentials after paired transcranial magnetic stimulation. Exp Brain Res 117:437–443

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503

    Article  PubMed  CAS  Google Scholar 

  • Uy J, Ridding MC, Hillier S, Thompson PD, Miles TS (2003) Does induction of plastic change in motor cortex improve leg function after stroke? Neurology 61:982–984

    PubMed  CAS  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  PubMed  CAS  Google Scholar 

  • Windhorst U (1996) On the role of recurrent inhibitory feedback in motor control. Prog Neurobiol 49:517–587

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB (1999) Interaction of the Jendrássik maneuver with segmental presynaptic inhibition. Exp Brain Res 124:474–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research presented here was supported by grants from the Canadian Institutes of Health Research and the Christopher and Dana Reeve Foundation. We thank Dr. Parveen Bawa for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, D.E., Roy, F.D., Gorassini, M.A. et al. Interaction of paired cortical and peripheral nerve stimulation on human motor neurons. Exp Brain Res 188, 13–21 (2008). https://doi.org/10.1007/s00221-008-1334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1334-8

Keywords

Navigation