Skip to main content
Log in

Plasticity of basal ganglia neurocircuitries following perinatal asphyxia: effect of nicotinamide

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The potential neuroprotection of nicotinamide on the consequences of perinatal asphyxia was investigated with triple organotypic cultures. Perinatal asphyxia was induced in vivo by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20 min. Sibling caesarean-delivered pups were used as controls. Three days later tissue from substantia nigra, neostriatum and neocortex was dissected and placed on a coverslip. After a month, the cultures were processed for immunocytochemistry and phenotyped with markers against the NMDA receptor subunit NR1, tyrosine hydroxylase (TH), or neuronal nitric oxide synthase (nNOS). Some cultures were analysed for cell viability. Nicotinamide (0.8 mmol/kg, i.p.) or saline was administered to asphyxia-exposed and caesarean-delivered control pups 24, 48 and 72 h after birth. Perinatal asphyxia produced a decrease of cell viability in substantia nigra, but not in neostriatum or neocortex. Immunocytochemistry confirmed the vulnerability of the substantia nigra, demonstrating that there was a significant decrease in the number of NR1 and TH-positive (+) cells/mm2, as well as a decrease in the length of TH+ processes, suggesting neurite atrophy. In control cultures, many nNOS+ cells were seen, with different features, regional distribution and cell body sizes. Following perinatal asphyxia, there was an increase in the number of nNOS+ cells/mm2 in substantia nigra, versus a decrease in neostriatum including reduced neurite length, and no apparent changes in neocortex. The main effect of nicotinamide was seen in the neostriatum, preventing the asphyxia-induced decrease in the number of nNOS+ cells and neurite length. Nicotinamide also prevented the effect of perinatal asphyxia on TH-positive neurite length. The present results support the idea that nicotinamide can prevent the effects produced by a sustained energy-failure condition, as occurring during perinatal asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-inducing factor

AN:

Nicotinamide-treated, asphyxia-exposed

AS:

Saline-treated, asphyxia-exposed

BCIP/NBT:

5-Bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium

BSA:

Bovine serum albumin

Calcein-AM:

Calcein-acetoxymethyl ester

CN:

Nicotinamide-treated, caesarean-delivered

CS:

Saline-treated, caesarean-delivered

Cx:

Neocortex

DA:

Dopamine

DIV:

Days in vitro

DMEM:

Dulbecco’s modified Eagle medium

ERCC2:

Excision repair cross-complementary rodent repair group 2

EthD-1:

Ethidium-homodimer

H:

Kruskal–Wallis factor for multiple comparison test

NADPH-d:

Nicotinamide adenine dinucleotide phosphate diaphorase

NF-κB:

Nuclear factor κB

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

eNOS:

Endothelial NO synthase

iNOS:

Inducible NOS

nNOS:

Neuronal NOS

NR1:

Subunit 1 of the NMDA receptor

PARP:

Poly(ADP-ribose) polymerase

PBS:

Phosphate-buffered saline

PF:

Para-formaldehyde

SN:

Substantia nigra

Str:

Neostriatum

TH:

Tyrosine hydroxylase

TNF-α:

Tumoral necrosis factor α

XRCC1:

X-ray cross complementary factor 1

References

  • Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dimagl U, Szabo C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in vitro and in vivo models of stroke. Int J Mol Medicine 7:255–260

    CAS  Google Scholar 

  • Akhter W, Ashraf QM, Zanelli SA, Mishra OP, Delivoria-Papadopoulus M (2001) Effect of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglets. Biol Neonate 79:187–193

    Article  PubMed  CAS  Google Scholar 

  • Amé J-C, Spenlehauer de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893

    Article  PubMed  CAS  Google Scholar 

  • Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG (2002) Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 110:245–256

    Article  PubMed  CAS  Google Scholar 

  • Berger NA (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 1001:4–15

    Article  Google Scholar 

  • Bustamante D, Goiny M, Åström G, Gross J, Andersson K, Herrera-Marschitz M (2003) Nicotinamide prevents the long-term effects of perinatal asphyxia on basal ganglia monoamine systems in the rat. Exp Brain Res 148:227–232

    PubMed  CAS  Google Scholar 

  • Bustamante D, Morales P, Torres Pereyra J, Goiny M, Herrera-Marschitz M (2006) Nicotinamide prevents the effect of perinatal asphyxia on dopamine release evaluated with in vivo microdialysis three months after birth. Exp Brain Res (Oct. 19; Epub)

  • Capani F, Loidl F, Lopez-Costa JJ, Selvin-Testa, Saavedra JP (1997) Ultrastructural changes in nitric oxide synthase immunoreactivity in the brain of rats subjected to perinatal asphyxia: neuroprotective effects of cold treatment. Brain Res 775:11–23

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Herrera-Marschitz M, Bjelke B, Blum M, Gross J, Andersson K (1997a) Perinatal asphyxia-induced changes in rat brain tyrosine-hydroxylase-immunoreactive cell body number: effects of nicotine treatment. Neurosci Lett 221:77–80

    Article  CAS  Google Scholar 

  • Chen Y, Engidawork E, Loidl F, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997b) Short- and long-term effects of perinatal asphyxia on monoamine, amino acid and glycolysis product levels measured in the basal ganglia of the rat. Dev Brain Res 104:19–30

    Article  CAS  Google Scholar 

  • Cheng HW, Jiang T, Brown SA, Pasinetti GM, Finch CE, McNeil TH (1994) Response of striatal astrocytes to neuronal deafferentiation: and immunocytochemical and ultrastructural study. Neuroscience 62:425–439

    Article  PubMed  CAS  Google Scholar 

  • Chiappe-Gutierrez M, Kitzmueller E, Labudova O, Fuerst G, Hoeger H, Hardmeier R, Nohl H, Gille L, Lubec B (1998) mRNA levels of the hypoxia inducible factor (HIF-1) and DNA repair genes in perinatal asphyxia of the rat. Life Sci 63:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Dell’Anna E, Chen Y, Loidl F, Andersson K, Luthman J, Goiny M, Rawal R, Lindgren T, Herrera-Marschitz M (1995) Short-term effects of perinatal asphyxia studied with Fos-immunocytochemistry and in vivo microdialysis in the rat. Exp Neurol 131:279–287

    Article  PubMed  CAS  Google Scholar 

  • Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia. Exp Brain Res 1151:105–115

    Article  Google Scholar 

  • De Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. TIBS 19:172–176

    PubMed  Google Scholar 

  • Ducrocq S, Benjelloun N, Plotkine M, Ben-Ari Y, Charriaut-Marlangue C (2000) Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain. J Neurochem 74:2504–2511

    Article  PubMed  CAS  Google Scholar 

  • Eliasson MJ, Sampei K, Madier AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Ezquer ME, Valdez SR, Seltzer AM (2006) Inflammatory responses of the substantia nigra after acute hypoxia in neonatal rats. Exp Neurol 171:391–398

    Article  CAS  Google Scholar 

  • Foster GA (1998) Chemical neuroanatomy of the prenatal rat brain. Oxford University Press, New York

    Google Scholar 

  • Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  Google Scholar 

  • Gomez-Urquijo S, Hökfelt T, Ubink R, Lubec G, Herrera-Marschitz M (1999) Neurocircuitries of the basal ganglia studied in organotypic cultures: focus on tyrosine hydroxylase, nitric oxide synthase and neuropeptide immunocytochemistry. Neuroscience 94:1133–1151

    Article  PubMed  CAS  Google Scholar 

  • Green A, Prager A, Stoudt PM, Murray D (1992) Relationships between DNA damage and the survival of radiosensitive mutant Chinese hamster cell lines exposed to gamma-radiation. Part 1 intrinsic radiosensitivity. Int J Radiat Biol 61:465–472

    PubMed  CAS  Google Scholar 

  • Hassa PO, Hottinger MO (1999) A role of poly(AFP-ribose) polymerase in NF-κB transcriptional activation. Biol Chem 380:953–959

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, loidl CF, Andersson K, Ungerstedt U (1993) Prevention of mortality induced by perinatal asphyxia: hypothermia or glutamate antagonism? Amino Acids 5:413–419

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M, Kohlhauser C, Gomez-Urquijo S, Ubink R, Goiny M, Hökfelt T (2000) Excitatory amino acids, monoamine, and nitric synthase systems in organotypic cultures: biochemical and immunohistochemical analysis. Amino Acids 19:33–43

    Article  PubMed  CAS  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signalling. TIPS 25:259–264

    PubMed  CAS  Google Scholar 

  • Hortobagyi T, Görlach C, Benyo ZL, Lacza Z, Hortobagyl S, Wahl M, Harkany T (2003) Inhibition of neuronal nitric oxide synthase-mediated activation of poly(ADP-ribose) polymerase in traumatic brain injury: Neuroprotection by 3-aminobenzamide. Neuroscience 121:983–990

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-J, Choi S-Y, Koh J-Y (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP-ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902

    Article  PubMed  CAS  Google Scholar 

  • Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S (2004) A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H0-pyridinyl)propyl]-4(3H)-quinazolinone) attenuates neuronal damage in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 310:425–436

    Article  PubMed  CAS  Google Scholar 

  • Jiang B-H, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Kim S, Murphy S, Song D, Pastuszko A (1997) Effect of hypoxia and reoxygenation on regional activity of nitric oxide synthase in brain of newborn piglets. Neurosci Lett 206:199–203

    Article  Google Scholar 

  • Kamanaka Y, Kondo K, Ikeda Y, Kamoshima W, Kitajima T, Suzuki Y, Nakamura Y, Umemura K (2004) Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci 76:151–162

    Article  PubMed  CAS  Google Scholar 

  • Kihara S, Shiraishi T, Nakagawa S, Toda K, Tabuchi K (1994) Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci Lett 175:133–136

    Article  PubMed  CAS  Google Scholar 

  • Klawitter V, Morales P, Johansson S, Bustamante D, Goiny M, Gross J, Luthman J, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures. Amino Acids 28:149–155

    Article  PubMed  CAS  Google Scholar 

  • Klawitter V, Morales P, Bustamante D, Goiny M, Herrera-Marschitz M (2006) Plasticity of the central nervous system (CNS) following perinatal asphyxia: does nicotinamide provide neuroprotection? Amino Acids (July 31 Epub)

  • Koh S-H, Park Y, Song CW, Kim JG, Kim K, Kim J, Kim M-H, Lee SR, Kim DW, Yu H-J, Chang D, Hwang SJ, Kim SH (2004) The effect of PARP inhibitor on ischemic cell death, its related inflammation and survival signals. Eur J Neurosci 20:1461–1472

    Article  PubMed  Google Scholar 

  • Kohlhauser C, Mosgoeller W, Hoeger H, Lubec G, Lubec B (1999a) Cholinergic, monoaminergic and glutamatergic changes following perinatal asphyxia in the rat. Cell Mol Life Sci 55:1491–1501

    Article  CAS  Google Scholar 

  • Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D, Prast H, Hoeger H, Lubec B (1999b) Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 64:2109–2124

    Article  CAS  Google Scholar 

  • Labudova O, Schüller E, Yeghiazarjan K, Kitzmueller E, Hoeger H, Lubec G, Lubec B (1999) Genes involved in the pathophysiology of perinatal asphyxia. Life Sci 64:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Loidl CF, Capani F, Lopez-Costa JJ, Selvin-Testa A, Lopez EM, Goldstein J, Pecci-Saavedra J (1997) Short-term changes in NADPH-diaphorase reactivity in rat brain following perinatal asphyxia. Mol Chem Neuropathol 31:301–316

    PubMed  CAS  Google Scholar 

  • Loizou LA (1972) The postnatal ontogeny of monoamine-containing neurones in the central nervous system of the albino rat. Brain Res 40:395–418

    Article  PubMed  CAS  Google Scholar 

  • Lubec B, Kozlov AV, Krapbenbauer K, Berger A, Hoeger H, Herrera-Marschitz M, Nohl H, Koeck T, Lubec G (1999) Nitric oxide and nitric oxide synthase in the early phase of perinatal asphyxia of the rat. Neuroscience 93:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Lubec B, Labudova O, Hoeger H, Kirchner L, Lubec G (2002) Expression of transcription factors in the brain of rats with perinatal asphyxia. Biol Neonate 81:266–278

    Article  PubMed  CAS  Google Scholar 

  • Maynard KI, Ayoub IA, Shen CC (2001) Delayed multidose treatment with Nicotinamide extends the degree and the duration of neuroprotection by reducing infarction and improving behavioral scores up to two weeks following transient focal cerebral ischemia in Wistar rats. Ann NY Acad Sci 939:416–424

    Article  PubMed  CAS  Google Scholar 

  • Mishra OP, Akhter W, Ashraf QM, Delivoria-Papadopoulus M (2003) Hypoxia-induced modification of poly (ADP-ribose) polymerase and DNA polymerase β activity in cerebral cortical nuclei of newborn piglets: role of nitric oxide. Neuroscience 119:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Morales P, Klawitter V, Johansson S, Huaiquin P, Barros VG, Avalos AM, Fiedler J, Bustamante D, Gomez-Urquijo S, Goiny M, Herrera-Marschitz M (2003) Perinatal asphyxia impairs connectivity and dopamine neurite branching in organotypic triple culture from rat substantia nigra. Neurosci Lett 348:175–179

    Article  PubMed  CAS  Google Scholar 

  • Mosgoeller W, Kastner P, Fang-Kircher S, Kitzmueller E, Hoeger H, Seitler P, Labudova O, Lubec B (2000) Polymerase and nucleolar structure in perinatal asphyxia of the rat. Exp Neurol 161:174–182

    Article  PubMed  CAS  Google Scholar 

  • Nagayama T, Simon RP, Chen D, Henshall DC, Pei W, Stetler RA, Chen J (2000) Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 74:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Kakui N, Ohkuma K, Ishikawa M, Hasegawa T (2005) A newly synthesized poly(ADP-ribose) polymerase inhibitor, DR2313[2-methyl-3,5,7,8-tetrahydrothiopyranol[4,3-d]-pyrimidine-4-one]: pharmacological profiles, neuroprotective effects and therapeutic time window in cerebral ischemia in rats. J Pharmacol Exp Ther 312:472–481

    Article  PubMed  CAS  Google Scholar 

  • Olson L, Seiger Å (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137:301–316

    Article  PubMed  CAS  Google Scholar 

  • Oo TF, Burke RE (1997) The time course of the developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev Brain Res 98:191–196

    Article  CAS  Google Scholar 

  • Petralia RS, Yokotani N, Wenthold RJ (1994) Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neuroscience 14:667–696

    CAS  Google Scholar 

  • Plenz D, Kitai ST (1996a) Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neurosci Lett 209:177–180

    Article  CAS  Google Scholar 

  • Plenz D, Kitai ST (1996b) Generation of high frequency oscillations in cortical circuits of somatosensory cortex cultures. J Neurophysiol 76:4001–4005

    Google Scholar 

  • Plenz D, Herrera-Marschitz M, Kitai ST (1998) Morphological organization of the subthalamic nucleus-globus pallidus system studied in organotypic cultures. J Comp Neurol 397:437–457

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara Y, Mitha AP, Ogilvy CS, Maynard KI (2000) Post-treatment with nicotinamide (vitamin B(3)) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague-Dawley and Wistar rats. Neurosci Lett 281:111–114

    Article  PubMed  CAS  Google Scholar 

  • Saldeen J, Welsh N (1998) Nicotinamide-induced apoptosis in insulin producing cells is associated with cleavage of poly(ADP-ribose) polymerase. Mol Cell Endocrinol 139:99–107

    Article  PubMed  CAS  Google Scholar 

  • Saldeen J, Tillmar L, Karlsson E, Welsh N (2003) Nicotinamide- and caspase-mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol Cell Biochem 243:113–122

    Article  PubMed  CAS  Google Scholar 

  • Schauwecker PE, Cogen JP, Jiang T, Cheng HW, Collier TJ, McNeil TH (1998) Differential regulation of astrocytic mRNAs in the rat striatum after lesions of the cortex or substantia nigra. Exp Neurol 149:87–96

    Article  PubMed  CAS  Google Scholar 

  • Seiger Å, Olson L (1973) Late prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 140:281–318

    Article  PubMed  CAS  Google Scholar 

  • Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365:852–855

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH (1999) Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res 829:46–54

    Article  PubMed  CAS  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  PubMed  CAS  Google Scholar 

  • Voorn P, Kalsbeck A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  CAS  Google Scholar 

  • Wan FJ, Lin HC, Kang BH, Tseng CJ, Tung CS (1999) d-amphetamine-induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment. Brain Res Bull 50:167–171

    Article  PubMed  CAS  Google Scholar 

  • West AR, Galloway MP, Grace AA (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signalling mechanisms. Synapse 44:227–245

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Briehl M, Crowley CL, Payne CM, Bernstein H, Bernstein C (1999) The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells. Biochem Biophys Res Commun 255:133–136

    Article  PubMed  CAS  Google Scholar 

  • Ying W, Alano CC, Garnier P, Swanson RA (2005) NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 79:216–223

    Article  PubMed  CAS  Google Scholar 

  • Yu SW, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GC, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1 dependent cell death by apoptosis-inducing factor. Science 297:250–263

    Article  Google Scholar 

  • Zhang J, Pieper A, Snyder SH (1995) Poly(ADP-ribose) synthase activation: an early indicator of neurotoxic DNA damage. J Neurochem 65:1411–1414

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Luo L (1992) Effect of nitroprusside (nitric oxide)on endogenous dopamine release from rat striatal slices. J Neurochem 59:932–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from FONDECYT-Chile (1030521) and DID (I2–02/8–2). We are grateful for the excellent technical and secretarial help from Mr. Juan Santibañez, Ms. Carmen Almeyda and Ms. Ana Maria Mendez. We thank Prof. Piers Emson, Barbrahan Institute, Cambridge University, Cambridge, UK for generous supply of NOS antiserum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Herrera-Marschitz.

Additional information

The contribution of VK and PM has been equally relevant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klawitter, V., Morales, P., Bustamante, D. et al. Plasticity of basal ganglia neurocircuitries following perinatal asphyxia: effect of nicotinamide. Exp Brain Res 180, 139–152 (2007). https://doi.org/10.1007/s00221-006-0842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0842-7

Keywords

Navigation