Skip to main content

Advertisement

Log in

Retinal projections to the lateral posterior-pulvinar complex in intact and early visual cortex lesioned cats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In intact cats, it is generally considered that the lateral posterior-pulvinar complex (LP-pulvinar) does not receive direct retinal terminals, with the exception of the retino-recipient zone known as the geniculate wing. There is, however, some evidence that early lesions of the visual cortex can occasionally induce the formation of novel retinal projections to the LP nucleus. Given the importance of knowing the connectivity pattern of the LP-pulvinar complex in intact and lesioned animals, we used the B fragment of cholera toxin, a sensitive anterograde tracer, to reinvestigate the retinal projections to the LP-pulvinar in normal cats and in cats with early unilateral lesions of the visual cortex (areas 17 and 18). Immunohistochemical localization of the toxin was performed to show the distribution and morphology of retinofugal terminals. A direct bilateral but predominantly contralateral retinal projection reached the caudal portion of LPl and LPm in the form of patches located mainly along its dorsomedial surface and many scattered terminals. The distribution of retinal projections to LP-pulvinar in intact and operated cats did not differ. Contrary to what had been previously reported, we found no evidence for lesion-induced sprouting of retinal axons in these higher-order thalamic nuclei. Retinal input to the LP-pulvinar might modulate visual responses driven by primary visual cortex or superior colliculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwala S, Petry HM, May JG (1989) Retinal projections in the ground Squirrel (Citellus tridecemlineatus). Vis Neurosci 3:537–549

    CAS  PubMed  Google Scholar 

  • Angelucci A, Clasca F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112

    Article  CAS  PubMed  Google Scholar 

  • Berman N, Jones EG (1977) A retino-pulvinar projection in the cat. Brain Res 164:237–248

    Article  Google Scholar 

  • Boire D, Casanova C, Ptito M (2000) Retinal projections to the lateral posterior-pulvinar in normal and striate cortex ablated cats: a cholera toxin B fragment study. Society for Neuroscience Abstracts 26(1-2): 549.13

  • Bronchti G, Rado R, Terkel J, Wollberg Z (1991) Retinal projections in the blind mole rat: a WGA-HRP tracing study of natural degeneration. Dev Brain Res 58:159–170

    Article  CAS  Google Scholar 

  • Bruce LL, Kicliter E (1984) A study of retinal projections in the ground squirrel, (Spermophilus tridecemlineatus) using anterograde transport techniques. P R Health Sci J 3:97–106

    Google Scholar 

  • Casanova C (2003) Functions of the pulvinar in vision. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge MA, pp 592–608

  • Casanova C, Freeman RD, Nordmann JP (1989) Monocular and binocular response properties of cells in the striate-recipient zone of the cat’s lateral posterior-pulvinar complex. J Neurophysiol 62:544–557

    CAS  PubMed  Google Scholar 

  • Casanova C, Savard T, Darveau S (1997) Contribution of area 17 to cell response in the striate-recipient zone of the cat’s lateral posterior-pulvinar complex. Eur J Neurosci 9:1026–1036

    CAS  PubMed  Google Scholar 

  • Casanova C, Merabet L, Desaultels A, Minville K (2001) Higher-Order motion processing in the pulvinar. Prog Brain Res 134:71–82

    Article  CAS  PubMed  Google Scholar 

  • Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  CAS  PubMed  Google Scholar 

  • Costa MS, Santee UR, Cavalcante JS, Moraes PR, Santos NP, Britto LR (1999) Retinohypothalamic projections in the common marmoset (Callithrix jacchus): a study using cholera toxin subunit B. J Comp Neurol 415:393–403

    Article  CAS  PubMed  Google Scholar 

  • Crain BJ, Hall WC (1980) The organization of afferents to the lateral posterior nucleus in the golden hamster after different combination of neonatal lesions. J Comp Neurol 193:403–412

    CAS  PubMed  Google Scholar 

  • Cunningham TJ (1972) Sprouting of the optic projections after cortical lesions. Anat Rec 172:298

    Google Scholar 

  • Cunningham TJ, Huddelston C, Murray M (1979) Modification of neuron numbers in the visual system of the rat. J Comp Neurol 184:423–434

    CAS  PubMed  Google Scholar 

  • Dumbrava D, Faubert J, Casanova C (2001) Global motion integration in the cat’s lateral posterior-pulvinar complex. Eur J Neurosci 13:2218–2226

    Article  CAS  PubMed  Google Scholar 

  • Erzumulu RS, Jhaveri S, Schneider GE (1988) Distribution of morphological different axon terminals in the hamster dorsal lateral geniculate nucleus. Brain Res 461:175–181

    Article  PubMed  Google Scholar 

  • Fite KV, Janusonis S, Foote W, Bengston L (1999) Retinal afferents to the dorsal raphe nucleus in rats and Mongolian gerbils. J Comp Neurol 414:469–484

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5:1175–1238

    Article  CAS  PubMed  Google Scholar 

  • Guido W, Spear PD, Tong L (1990) Functional compensation in the lateral suprasylvian visual area following bilateral visual cortex damage in kittens. Exp Brain Res 83:219–224

    CAS  PubMed  Google Scholar 

  • Guillery RW, Geisert EE, Polley EH, Mason CA (1980) An analysis of the retinal afferents to the cat’s interlaminar nucleus and to its rostral extension the “geniculate wing”. J Comp Neurol 194:117–142

    CAS  PubMed  Google Scholar 

  • Harman AM, Coleman LA, Beazley LD (1990) Retinofugal projections in a marsupial, Tarsipes rostratus (Honey possum). Brain Behav Evol 36:30–38

    CAS  PubMed  Google Scholar 

  • Hutchins B, Updyke BV (1989) Retinotopic organization within the lateral posterior complex of the cat. J Comp Neurol 285:359–398

    Google Scholar 

  • Itoh K, Mizuno N, Kudo M (1983) Direct retinal projections to the lateroposterior and pulvinar nuclear complex (LP-Pul) in the cat, as revealed by anterograde HRP method. Brain Res 276:325–328

    Article  CAS  PubMed  Google Scholar 

  • Kawamura S, Fukushima N, Hattori S (1979) Topographical origin and ganglion cell type of the retino-pulvinar projection in the cat. Brain Res 173:419–429

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Nakamura Y, Moriizumi T, Tokuno H, Kitao Y (1988) Direct retinal projections to the lateroposterior thalamic nucleus (LP) in the mole. Neurosci Lett 93:176–180

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Schneider GE, Northmore D, Jhaveri S (1997a) Afferents from the colliculus, cortex and retina have distinct terminal morphologies in the lateral posterior thalamic nucleus. J Comp Neurol 388:467–483

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Jhaveri S, Schneider GE (1997b) Target- as well as source-derived factors direct the morphogenesis of anomalous retino-thalamic projections. J Comp Neurol 388:454–466

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Schneider GE, Jhaveri S (1998) Target-specific morphology of retinal axon arbors in the adult hamster. Vis Neurosci 15:559–579

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, MacNeil MA, Payne BR (1995) Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in cat. Cereb Cortex 2:166–191

    Google Scholar 

  • Major DE, Rodman HR, Libedinsky C, Karten HJ (2003) Pattern of retinal projections in the California ground squirrel (Spermophilus beecheyi): anterograde tracing study using cholera toxin. J Comp Neurol 463:317–340

    Article  PubMed  Google Scholar 

  • Mason R (1981) Differential responsiveness of cells in the visual zones of the cat’s LP-pulvinar complex to visual stimuli. Exp Brain Res 43:25–33

    CAS  PubMed  Google Scholar 

  • Merabet L, Desautels A, Minville K, Casanova C (1998) Motion integration in a thalamic visual nucleus. Nature 396:265–268

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen JD (1992) Visualization of efferent retinal projections by immunohistochemical identification of cholera toxin subunit B. Brain Res Bull 28:619–623

    Article  CAS  PubMed  Google Scholar 

  • Murphy EH, Grigonis AM, Hayden TE, Tashayyod D, Wilkes M (1988) The effect of ablation of visual cortex in neonatal rabbits on the organization of retinothalamic and retinopretectal projections. Dev Brain Res 38:27–35

    Article  Google Scholar 

  • Payne BR, Foley HA, Lomber SG (1993) Visual cortex damage-induced growth of retinal axons into the lateral posterior nucleus of the cat. Vis Neurosci 10:747–752

    CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG, Macneil MA, Cornwell P (1996) Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 34:741–774

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG, Gelston CD (2000) Graded sparing of visually-guided orienting following primary visual cortex ablations within the first postnatal month. Behav Brain Res 117:1–11

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Cowey A (1979) Changes in retino-fugal pathways following cortical and tectal lesions in neonatal and adult rats. Exp Brain Res 35:97–108

    CAS  PubMed  Google Scholar 

  • Reiner A, Zhang D, Eldred WD (1996) Use of the sensitive anterograde tracer cholera toxin fragment B reveals new details of the central retinal projections in turtles. Brain Behav Evol 48:307–337

    CAS  PubMed  Google Scholar 

  • Reinoso-Suárez F (1961) Topographischer Hirnatlas der Katze. Herausgegeben von E Merck AG, Darmstadt

  • Restrepo CE, Manger PR, Innocenti GM (2002) Retinofugal projections following early lesions of the visual cortex in the ferret. Eur J Neurosci 16:1713–1719

    Article  PubMed  Google Scholar 

  • Reuss S, Fuchs E (2000) Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe. Brain Res 874:66–74

    Article  CAS  PubMed  Google Scholar 

  • Royce GJ, Ward JP, Harting JK (1977) Retinofugal pathways in two marsupials. J Comp Neurol 170:391–414

    Google Scholar 

  • Sanderson KJ, Pearson LJ (1977) Retinal projections in the Tasmanian devil, Sarcophilus harrisii. J Comp Neurol 188:335–345

    Google Scholar 

  • Sanderson KJ, Pearson LJ, Haight JR (1979) Retinal projections in the native cat, Dasyurus viverrinus. J Comp Neurol 174:347–357

    Google Scholar 

  • Schneider GE (1970) Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav Evol 3:295–323

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

  • Shimizu T, Cox K, Karten HJ, Britto LR (1994) Cholera toxin mapping of retinal projections in pigeons (Columbia livia), with emphasis on retinohypothalamic connections. Vis Neurosci 11:441–446

    CAS  PubMed  Google Scholar 

  • Spear PD, Kalil R, Tong L (1980) Functional compensation in lateral suprasylvian visual area following neonatal visual cortex removal in cats. J Neurophysiol 43:851–869

    CAS  PubMed  Google Scholar 

  • Takahashi ES, Hickey TL, Oyster CW (1977) Retinogeniculate projections in the rabbit: an autoradiographic study. J Comp Neurol 175:1–12

    CAS  PubMed  Google Scholar 

  • Tong L, Kalil R, Spear PD (1984) Critical periods for functional and anatomical compensation in the lateral suprasylvian visual area following removal of visual cortex in cats. J Neurophysiol 52:941–960

    CAS  PubMed  Google Scholar 

  • Updyke BV (1977) Topographic organization of the projections from cortical areas 17, 18 and 19 onto the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol 173:81–122

    CAS  PubMed  Google Scholar 

  • Uchida K, Mizuno N, Sugimoto T, Itoh K (1982) Autoradiographic demonstration of retinal projections to the brain stem structures in the rabbit using transneuronal tracing technique with special reference to the retinal projections to the inferior olive. Exp Neurol 78:369–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by CIHR (Canada) operating grants to M.P. and C.C. Part of the salary of C.C. is provided by FRSQ (Québec).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Boire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boire, D., Matteau, I., Casanova, C. et al. Retinal projections to the lateral posterior-pulvinar complex in intact and early visual cortex lesioned cats. Exp Brain Res 159, 185–196 (2004). https://doi.org/10.1007/s00221-004-1946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1946-6

Keywords

Navigation