Skip to main content
Log in

Uniqueness of a Planar Contact Discontinuity for 3D Compressible Euler System in a Class of Zero Dissipation Limits from Navier–Stokes–Fourier System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the stability of a planar contact discontinuity without shear, a family of special discontinuous solutions for the three-dimensional full Euler system, in the class of vanishing dissipation limits of the corresponding Navier–Stokes–Fourier system. We also show that solutions of the Navier–Stokes–Fourier system converge to the planar contact discontinuity when the initial datum converges to the contact discontinuity itself. This implies the uniqueness of the planar contact discontinuity in the class that we are considering. Our results give an answer to the open question, whether the planar contact discontinuity is unique for the multi-D compressible Euler system. Our proof is based on the relative entropy method, together with the theory of a-contraction up to a shift and our new observations on the planar contact discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akopian, S., Kang, M.-J., Vasseur, A.: Inviscid limit to the shock waves for the fractal Burgers equation. Commun. Math. Sci. 18, 1477–1491 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al Baba, H., Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Non-uniqueness of admissible weak solution to the Riemann problem for the full Euler system in two dimensions. SIAM J. Math. Anal. 52(2), 1729–1760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. B\(\check{\rm r}\)ezina, J., Kreml, O., Mácha, V.: Non-uniqueness of delta shocks and contact discontinuities in the multi-dimensional model of Chaplygin gas. Nonlinear Differ. Equ. Appl., 28, Article number: 13 (2021)

  4. Bianchini, S., Bressan, A.: Vanishing viscosity solutions to nolinear hyperbolic systems. Ann. Math. 166, 223–342 (2005)

    Article  MATH  Google Scholar 

  5. Chen, G.-Q., Chen, J.: Stability of rarefaction waves and vacuum states for the multidimensional Euler equations. J. Hyperbolic Differ. Equ. 4, 105–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G.-Q., Frid, H., Li, Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201–217 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Ann. Inst. H. Poincaré Anal. Non Linaire 32(1), 225–243 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chiodaroli, E., Kreml, O.: On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214(3), 1019–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, K., Kang, M.-J., Kwon, Y., Vasseur, A.: Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. Math. Models Methods Appl. Sci. 30, 387–437 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, K., Vasseur, A.: Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. SIAM J. Math. Anal. 47, 1405–1418 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin (2000)

  14. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Lellis, C., Székelyhidi, L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Science Publication, Oxford (2004)

    MATH  Google Scholar 

  19. Feireisl, E., Klingenberg, C., Kreml, O., Markfelder, S.: On oscillatory solutions to the complete Euler system. J. Differ. Equ. 269(2), 1521–1543 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Feireisl, E., Kreml, O.: Uniqueness of rarefaction waves in multidimensional compressible Euler system. J. Hyperbolic Differ. Equ. 12, 489–499 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feireisl, E., Kreml, O., Vasseur, A.: Stability of the isentropic Riemann solutions of the full multidimensional Euler system. SIAM J. Math. Anal. 47, 2416–2425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, F.M., Wang, Y., Wang, Y., Yang, T.: The limit of the Boltzmann equation to the Euler equations. SIAM J. Math. Anal. 45, 1741–1811 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, F.M., Wang, Y., Yang, T.: Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic Related Models 3, 685–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, F.M., Wang, Y., Yang, T.: Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Commun. Math. Phys. 295, 293–326 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Huang, F.M., Wang, Y., Yang, T.: Vanishing viscosity limit of the compressible Navier–Stokes equations for solutions to Riemann problem. Arch. Ration. Mech. Anal. 203, 379–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kang, M.-J.: Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. Kinet. Relat. Models 11(1), 107–118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kang, M.-J.: \(L^2\)-type contraction for shocks of scalar viscous conservation laws with strictly convex flux. J. Math. Pures Appl. 145, 1–43 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kang, M.-J., Vasseur, A.: Asymptotic analysis of Vlasov-type equations under strong local alignment regime. Math. Mod. Meth. Appl. Sci. 25(11), 2153–2173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, M.-J., Vasseur, A.: Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal. 222(1), 343–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kang, M.-J., Vasseur, A.: \(L^2\)-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire 34(1), 139–156 (2017)

    Article  ADS  MATH  Google Scholar 

  31. Kang, M.-J., Vasseur, A.: Contraction property for large perturbations of shocks of the barotropic Navier–Stokes system. J. Eur. Math. Soc. (JEMS) 23, 585–638 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kang, M.-J., Vasseur, A.: Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier–Stokes systems. Invent. Math 224(1), 55–146 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kang, M.-J., Vasseur, A., Wang, Y.: \(L^2\)-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws. J. Differ. Equ. 267(5), 2737–2791 (2019)

    Article  ADS  MATH  Google Scholar 

  34. Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. Nonlinearity 33(12), 6517–6540 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Klingenberg, C., Markfelder, S.: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227, 967–994 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krupa, S.: Criteria for the a-contraction and stability for the piecewise-smooth solutions to hyperbolic balance laws. Commun. Math. Sci. 18(6), 1493–1537 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Krupa, S.: Finite time stability for the Riemann problem with extremal shocks for a large class of hyperbolic systems. J. Differ. Equ. 273, 122–171 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Leger, N.: \(L^2\) stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199(3), 761–778 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leger, N., Vasseur, A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, L.A., Wang, D.H., Wang, Y.: Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier–Stokes–Fourier equations (preprint)

  41. Li, L.A., Wang, D.H., Wang, Y.: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier–Stokes equations. Commun. Math. Phys. 376(1), 353–384 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Li, L.A., Wang, T., Wang, Y.: Stability of planar rarefaction wave to 3D full compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 230, 911–937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, L.A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 50, 4937–4963 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

  45. Serre, D.: Systems of Conservation Laws I, II. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  46. Serre, D., Vasseur, A.: \(L^2\)-type contraction for systems of conservation laws. J. Éc. Polytech. Math. 1, 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Serre, D., Vasseur, A.: About the relative entropy method for hyperbolic systems of conservation laws. Contemp. Math. AMS 658, 237–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Serre, D., Vasseur, A.: The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete Contin. Dyn. Syst. 36(8), 4569–4577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stokols, L.: \(L^2\)-type contraction of viscous shocks for large family of scalar conservation laws . J. Hyperbolic Differ. Equ. (to appear)

  50. Vasseur, A.: Time regularity for the system of isentropic gas dynamics with \(\gamma =3\). Commun. Partial Differ. Equ. 24(11–12), 1987–1997 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vasseur, A.: Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In: Recent advances in partial differential equations and applications, volume 666 of Contemp. Math., pages 385–404. Amer. Math. Soc., Providence, RI (2016)

  52. Vasseur, A., Wang, Y.: The inviscid limit to a contact discontinuity for the compressible Navier–Stokes–Fourier system using the relative entropy method. SIAM J. Math. Anal. 47(6), 4350–4359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M.-J. Kang was partially supported by the NRF-2019R1C1C1009355. A. Vasseur was partially supported by the NSF Grant: DMS 1614918. Y. Wang is supported by NSFC Grants Nos. 12090014 and 11688101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Jin Kang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, MJ., Vasseur, A.F. & Wang, Y. Uniqueness of a Planar Contact Discontinuity for 3D Compressible Euler System in a Class of Zero Dissipation Limits from Navier–Stokes–Fourier System. Commun. Math. Phys. 384, 1751–1782 (2021). https://doi.org/10.1007/s00220-021-04100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04100-3

Navigation