Skip to main content
Log in

Rational Degenerations of \({{\mathtt{M}}}\)-Curves, Totally Positive Grassmannians and KP2-Solitons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a new connection between the theory of totally positive Grassmannians and the theory of \({{\mathtt{M}}}\)-curves using the finite-gap theory for solitons of the KP equation. Here and in the following KP equation denotes the Kadomtsev–Petviashvili 2 equation [see (1)], which is the first flow from the KP hierarchy. We also assume that all KP times are real. We associate to any point of the real totally positive Grassmannian \({Gr^{\textsc{tp}} (N,M)}\) a reducible curve which is a rational degeneration of an \({{\mathtt{M}}}\)-curve of minimal genus \({g=N(M-N)}\), and we reconstruct the real algebraic-geometric data á la Krichever for the underlying real bounded multiline KP soliton solutions. From this construction, it follows that these multiline solitons can be explicitly obtained by degenerating regular real finite-gap solutions corresponding to smooth \({{\mathtt{M}}}\)-curves. In our approach, we rule the addition of each new rational component to the spectral curve via an elementary Darboux transformation which corresponds to a section of a specific projection \({Gr^{\textsc{tp}} (r+1,M-N+r+1)\mapsto Gr^{\textsc{tp}} (r,M-N+r)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abenda S.: On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy. J.Geom.Phys. 119, 112–138 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Abenda, S., Grinevich, P.G.: KP theory, plane-bipartite networks in the disk and rational degenerations of \({{\mathtt{M}}}\)-curves. arXiv:1801.00208

  3. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of algebraic curves. Volume II. With a contribution by Joseph Daniel Harris. Grundlehren der Mathematischen Wissenschaften 268, Springer, Heidelberg (2011)

  4. Arkani-Hamed, N., Bourjaily, J.L., Cachazo F., Goncharov A.B., Postnikov A., Trnka J.: Scattering Amplitudes and the Positive Grassmannian. arXiv:1212.5605

  5. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge (2016)

  6. Biondini G., Kodama Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A 36(42), 10519–10536 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Boiti M., Pempinelli F., Pogrebkov A.K., Prinari B.: Towards an inverse scattering theory for non-decaying potentials of the heat equation. Inverse Probl. 17, 937–957 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Boiti M., Pempinelli F., Pogrebkov A.K.: Properties of the solitonic potentials of the heat operator. Theoret. Math. Phys. 168(1), 865–874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavaretta A.S. Jr., Dahmen W.A., Micchelli C.A., Smith P.W.: A factorization theorem for banded matrices. Linear Algebra Appl. 39, 229–245 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chakravarty S., Kodama Y.: Classification of the line-soliton solutions of KPII. J. Phys. A 41(27), 275209,33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chakravarty S., Kodama Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123(1), 83–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Boor C., Pinkus A.: The approximation of a totally positive band matrix by a strictly banded totally positive one. Linear Algebra Appl. 42, 81–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dickey, L. A.: Soliton equations and Hamiltonian systems. Second edition. Advanced Series in Mathematical Physics, 26, World Scientific Publishing Co., Inc., River Edge, NJ (2003)

  14. Dimakis A., Müller-Hoissen F.: KP line solitons and Tamari lattices. J. Phys. A 44(2), 025203, 49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubrovin B.A., Krichever I.M., Novikov S.P.: Dynamical Systems, IV, Encyclopaedia Math. Sci. Springer, Berlin (2001)

    Google Scholar 

  16. Dubrovin B.A., Natanzon S.M.: Real theta-function solutions of the Kadomtsev–Petviashvili equation. Izv. Akad. Nauk SSSR Ser. Mat. 52(2), 267–286 (1998)

    MathSciNet  Google Scholar 

  17. Fomin S., Zelevinsky A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fomin S., Zelevinsky A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gantmacher F.R., Krein M.G.: Sur les matrices oscillatoires. C. R. Acad. Sci. Paris 201, 577–579 (1935)

    MATH  Google Scholar 

  20. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. Mathematical Surveys and Monographs, 167, American Mathematical Society, Providence, RI (2010)

  21. Goncharov A.B., Kenyon R.: Dimers and cluster integrable systems. Ann. Sci. École Norm. Super. (4) 46(5), 747–813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, Hoboken (1978)

    MATH  Google Scholar 

  23. Gross B.H., Harris J.: Real algebraic curves. Ann. Sci. École Norm. Super. série 4 14(2), 157–182 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harnack A.: Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann. 10, 189–199 (1876)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirota R. (2004) The direct method in soliton theory. Cambridge Tracts in Mathematics, 155, Cambridge University Press, Cambridge (2004)

  26. Kadomtsev B.B., Petviashvili V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    ADS  MATH  Google Scholar 

  27. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kodama Y., Williams L.K.: KP solitons, total positivity, and cluster algebras. Proc. Natl. Acad. Sci. USA 108(22), 8984–8989 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kodama Y., Williams L.: The Deodhar decomposition of the Grassmannian and the regularity of KP solitons. Adv. Math. 244, 979–1032 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kodama Y., Williams L.: KP solitons and total positivity for the Grassmannian. Invent. Math. 198(3), 637–699 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Krichever I.M.: An algebraic-geometric construction of the Zakharov–Shabat equations and their periodic solutions. (Russian) Dokl.Akad. Nauk SSSR 227(2), 291–294 (1976)

    MathSciNet  Google Scholar 

  32. Krichever I.M.: Integration of nonlinear equations by the methods of algebraic geometry. (Russian) Funkcional. Fubk. Anal. i Pril. 11(1), 15–31,96 (1977)

    Google Scholar 

  33. Krichever I.M.: The spectral theory of nonstationary Schroedinger operator. The nonstationary Peierls model. (Russian). Funk. Anal. i pril. 20(3), 42–54 (1986)

    Google Scholar 

  34. Krichever, I.M., Vaninsky, K.L.: The Periodic and Open Toda Lattice. AMS/IP Stud. Adv. Math., 33, Amer. Math. Soc.,pp. 139-158. Providence, RI (2002)

  35. Lam T.: Dimers, webs, and positroids. J. Lond. Math. Soc. (2) 92(3), 633–656 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lusztig, G.: Total positivity in reductive groups. Lie theory and geometry, 531-568, Progr. Math., 123, Birkhäuser Boston, Boston, MA, (1994)

  37. Lusztig G.: Total positivity in partial flag manifolds. Represent. Theory 2, 70–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lusztig G.: A survey of total positivity. Milan J. Math. 76, 125–134 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Malanyuk T.M.: A class of exact solutions of the Kadomtsev–Petviashvili equation. Russian Math. Surveys 46(3), 225–227 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Marsh R.J., Rietsch K.: Parametrizations of flag varieties. Represent. Theory 8, 212–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Matveev V.B.: Some comments on the rational solutions of the Zakharov–Schabat equations. Lett. Math. Phys. 3, 503–512 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Matveev V.B., Salle M.A.: Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  43. Miwa, T., Jimbo, M., Date, E.: Solitons. Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge (2000)

  44. Natanzon S.M.: Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves. Rus. Math. Surv. 54(6), 1091–1147 (1999)

    Article  MATH  Google Scholar 

  45. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: “Theory of solitons. The inverse scattering method”, Contemporary Soviet Mathematics. Consultants Bureau [Plenum], New York (1984)

  46. Petrowsky I.: On the Topology of Real Plane Algebraic Curves. Annals of Mathematics Second Series 39(1), 189–209 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pinkus, A.: Totally positive matrices. Cambridge Tracts in Mathematics, 181, Cambridge University Press, Cambridge (2010). ISBN: 978-0-521-19408-2

  48. Postnikov, A.: Total positivity, Grassmannians, and networks. arXiv:math/0609764 [math.CO]

  49. Sato, M.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. In: Lax, P., Fujita, H. (eds). Nonlinear PDEs in Applied Sciences (US-Japan Seminar, Tokyo),pp. 259-271 North-Holland, Amsterdam (1982)

  50. Schoenberg J.: Über variationsvermindende lineare Transformationen. Mathematishe Zeitschrift 32, 321–328 (1930)

    Article  MATH  Google Scholar 

  51. Talaska K.: Combinatorial formulas for -coordinates in a totally nonnegative Grassmannian. J. Combin. Theory Ser. A 118(1), 58–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Veselov A.P., Novikov S.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations. Soviet Math. Dokl. 30, 588–591 (1984)

    MATH  Google Scholar 

  53. Veselov A.P., Novikov S.P.: Finite-zone, two-dimensional Schrödinger operators. Potential operators. Soviet Math. Dokl. 30, 705–708 (1984)

    MATH  Google Scholar 

  54. Viro O. Ya.: Real plane algebraic curves: constructions with controlled topology. Leningrad Math. J. 1(5), 1059-1134 (1990)

  55. Whitney A.M.: A reduction theorem for totally positive matrices. J. Analyse Math. 2, 88–92 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zakharov V.E., Shabat A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8(3), 226–235 (1974)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Abenda.

Additional information

Communicated by C. Schweigert

This work has been partially supported by PRIN “Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”, by the project “EQUATIONS”, by the Russian Foundation for Basic Research, Grant 17-01-00366, by the program “Fundamental problems of nonlinear dynamics”, Presidium of RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abenda, S., Grinevich, P.G. Rational Degenerations of \({{\mathtt{M}}}\)-Curves, Totally Positive Grassmannians and KP2-Solitons. Commun. Math. Phys. 361, 1029–1081 (2018). https://doi.org/10.1007/s00220-018-3123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3123-y

Navigation