Skip to main content
Log in

Kitaev Lattice Models as a Hopf Algebra Gauge Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that Kitaev’s lattice model for a finite-dimensional semisimple Hopf algebra H is equivalent to the combinatorial quantisation of Chern–Simons theory for the Drinfeld double D(H). This shows that Kitaev models are a special case of the older and more general combinatorial models. This equivalence is an analogue of the relation between Turaev–Viro and Reshetikhin–Turaev TQFTs and relates them to the quantisation of moduli spaces of flat connections. We show that the topological invariants of the two models, the algebra of operators acting on the protected space of the Kitaev model and the quantum moduli algebra from the combinatorial quantisation formalism, are isomorphic. This is established in a gauge theoretical picture, in which both models appear as Hopf algebra valued lattice gauge theories. We first prove that the triangle operators of a Kitaev model form a module algebra over a Hopf algebra of gauge transformations and that this module algebra is isomorphic to the lattice algebra in the combinatorial formalism. Both algebras can be viewed as the algebra of functions on gauge fields in a Hopf algebra gauge theory. The isomorphism between them induces an algebra isomorphism between their subalgebras of invariants, which are interpreted as gauge invariant functions or observables. It also relates the curvatures in the two models, which are given as holonomies around the faces of the lattice. This yields an isomorphism between the subalgebras obtained by projecting out curvatures, which can be viewed as the algebras of functions on flat gauge fields and are the topological invariants of the two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev A., Grosse H., Schomerus V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory I. Commun. Math. Phys. 172(2), 317–358 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alekseev A., Grosse H., Schomerus V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory II. Commun. Math. Phys. 174(3), 561–604 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alekseev A., Schomerus V.: Representation theory of Chern–Simons observables. Duke Math. J. 85(2), 447–510 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alekseev A., Malkin A.: Symplectic structures associated to Lie–Poisson groups. Commun. Math. Phys. 162(1), 147–173 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Balsam B.: Kirillov Jr A.: Kitaev’s Lattice Model and Turaev–Viro TQFTs. arXiv preprint arXiv:1206.2308

  6. Balsam B.: Turaev–Viro invariants as an extended TQFT II. arXiv preprint arXiv:1010.1222

  7. Balsam B.: Turaev–Viro invariants as an extended TQFT III. arXiv preprint arXiv:1012.0560

  8. Barrett J.: Quantum gravity as topological quantum field theory. J. Math. Phys. 36(11), 6161–6179 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Barrett J., Martins J., García-Islas J.: Observables in the Turaev–Viro and Crane–Yetter models. J. Math. Phys. 48(9), 093508 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Barrett J., Westbury B.: Invariants of piecewise-linear 3-manifolds. Trans. Am. Math. Soc. 348(10), 3997–4022 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baskerville W., Majid S.: The braided Heisenberg group. J. Math. Phys. 34(8), 3588–3606 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Beverland M., Buerschaper O., Koenig R., Pastawski F., Preskill J., Sijher S.: Protected gates for topological quantum field theories. J. Math. Phys. 57(2), 022201 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bombin H., Martin-Delgado M.: A family of non-Abelian Kitaev models on a lattice: topological condensation and confinement. Phys. Rev. B 78(11), 115421 (2008)

    Article  ADS  Google Scholar 

  14. Buerschaper O., Aguado M.: Mapping Kitaev’s quantum double lattice models to Levin and Wen’s string-net models. Phys. Rev. B 80(15), 155136 (2009)

    Article  ADS  Google Scholar 

  15. Buerschaper O., Mombelli J. M., Christandl M., Aguado M.: A hierarchy of topological tensor network states. J. Math. Phys. 54(1), 012201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Buffenoir E., Noui K., Roche Ph.: Hamiltonian quantization of Chern–Simons theory with \({SL(2,\mathbb C)}\) group. Class. Quantum Gravity 19, 4953–5016 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Buffenoir E., Roche Ph.: Two dimensional lattice gauge theory based on a quantum group. Commun. Math. Phys. 170(3), 669–698 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Buffenoir, E., Roche, Ph.: Link invariants and combinatorial quantization of hamiltonian Chern Simons theory. Commun. Math. Phys. 181(2), 331–365 (1996)

  19. Bullock D., Frohman C., Kania-Bartoszýnska J.: Topological interpretations of lattice gauge field theory. Commun. Math. Phys. 198, 47–81 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Drinfeld V.: On almost cocommutative Hopf algebras. Len. Math. J. 1, 321–342 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Ellis-Monaghan J., Moffat I.: Graphs on Surfaces: Dualities, Polynomials, and Knots, vol. 84. Springer, Berlin (2013)

    Book  Google Scholar 

  22. Etinghof P., Gelaki S.: Some properties of finite-dimensional semisimple Hopf algebras. Mathods Res. Lett. 5, 191–197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fock V., Rosly A.: Poisson structure on moduli of flat connections and r-matrix. Am. Math. Soc. Transl. 191, 67–86 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Kádár, Z., Marzuoli, A.: Rasetti M. Microscopic description of 2d topological phases, duality, and 3D state sums. Adv. Math. Phys. 2010, Article ID 671039 (2010)

  25. Kádár Z., Marzuoli A., Rasetti M.: Braiding and entanglement in spin networks: a combinatorial approach to topological phases. Int. J. Quantum Inf. 7(supp), 195–203 (2009)

    Article  Google Scholar 

  26. Kassel C.: Quantum Groups,Vol. 155. Springer Science & Business Media, New York (2012)

    Google Scholar 

  27. Kirillov Jr., A., Balsam, B.: Turaev–Viro invariants as an extended TQFT. arXiv preprint arXiv:1004.1533

  28. Kitaev A: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

  29. Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Koenig R. Kuperberg G. Reichardt B.: Quantum computation with Turaev–Viro codes. Ann. Phys. 325(12), 2707–2749 (2010)

  31. Lando S.Zvonkin, A.: Graphs on Surfaces and Their Applications, vol 141. Springer Science & Business Media, New York (2013)

  32. Larson G., Radford D.: Semisimple cosemisimple Hopf algebras. Am. J. Math 109, 187–195 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Levin M., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71(4), 045110 (2005)

    Article  ADS  Google Scholar 

  34. Levin M., Wen X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96(11), 110405 (2006)

    Article  ADS  Google Scholar 

  35. Majid, S.: Algebras and Hopf algebras in braided categories. In: Advances in Hopf algebras. Lecture Notes in Pure and Appl. Math Dekker, New York 158, 55–105 (1994)

  36. Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  37. Meusburger C., Noui K.: The Hilbert space of 3d gravity: quantum group symmetries and observables. Adv. Theor. Math. Phys 14(6), 1651–1716 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meusburger C. Wise D.: Hopf algebra gauge theory on a ribbon graph. arXiv preprint arXiv:1512.03966

  39. Montgomery S.: Hopf algebras and their actions on rings Montgomery. Am. Math. Soc. 82 (1993)

  40. Radford D.: Minimal quasitriangular Hopf algebras. J. Algebra 157(2), 281–315 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Radford D.: Hopf Algebras Series on Knots and Everything, vol. 49. World Scientific, Singapore (2011)

    Google Scholar 

  42. Reshetikhin N., Turaev V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(1), 547–597 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Turaev, V., Virelizier, A.: On two approaches to 3-dimensional TQFTs. arXiv preprint arXiv:1006.3501

  44. Turaev V., Viro O.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Meusburger.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meusburger, C. Kitaev Lattice Models as a Hopf Algebra Gauge Theory. Commun. Math. Phys. 353, 413–468 (2017). https://doi.org/10.1007/s00220-017-2860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2860-7

Navigation