Skip to main content

Advertisement

Log in

Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2021

This article has been updated

Abstract

It has previously been suggested that small subsystems of closed quantum systems thermalize under some assumptions; however, this has been rigorously shown so far only for systems with very weak interaction between subsystems. In this work, we give rigorous analytic results on thermalization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary strength, in all cases where there is a unique equilibrium state at the corresponding temperature. We clarify the physical picture by showing that subsystems relax towards the reduction of the global Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and certain non-degeneracy conditions on the spectrumare satisfied.Moreover,we showthat almost all pure states with support on a small energy window are locally thermal in the sense of canonical typicality. We derive our results from a statement on equivalence of ensembles, generalizing earlier results by Lima, and give numerical and analytic finite size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is valid regardless of the integrability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Trotzky S., Chen Y-A., Flesch A., McCulloch I.P., Schollwöck U., Eisert J., Bloch I.: Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325 (2012)

    Article  Google Scholar 

  2. Bañuls M.C., Cirac J.I., Hastings M.B.: Strong and weak thermalization of infinite nonintegrable quantum systems. Phys. Rev. Lett. 106, 050405 (2011)

    Article  ADS  Google Scholar 

  3. Goldstein S., Lebowitz J.L., Tumulka R., Zanghi N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. Popescu S., Short A.J., Winter A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  5. Reimann P.: Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  6. Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Short A.J.: Equilibration of quantum systems and subsystems. New J. Phys. 13(5), 053009 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  8. Short A.J., Farrelly T.C.: Quantum equilibration in finite time. New J. Phys. 14, 013063 (2012)

    Article  ADS  Google Scholar 

  9. Ududec C., Wiebe N., Emerson J.: Information-theoretic equilibration: the appearance of irreversibility under complex quantum dynamics. Phys. Rev. Lett. 111, 080403 (2013)

    Article  ADS  Google Scholar 

  10. Riera A., Gogolin C., Eisert J.: Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080802 (2012)

    Article  Google Scholar 

  11. Lima R.: Equivalence of ensembles in quantum lattice systems. Annales de l’I. H.P. 15(1), 61–68 (1971)

    MathSciNet  Google Scholar 

  12. Lima R.: Equivalence of ensembles in quantum lattice systems: states. Commun. Math. Phys. 24, 180–192 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  13. Simon B.: The Statistical Mechanics of Lattice Gases, Vol. 1. Princeton University Press, Princeton (1993)

    Book  Google Scholar 

  14. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I and II. Springer, New York (2002)

    Google Scholar 

  15. Araki H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14, 120–157 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Araki H.: On the equivalence of the KMS condition and the variational principle for quantum lattice systems. Commun. Math. Phys. 38, 1–10 (1974)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Araki H.: On uniqueness of KMS states of one-dimensional quantum lattice systems. Commun. Math. Phys. 44, 1–7 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kliesch, M., Gogolin, C., Kastoryano, M.J., Riera, A., Eisert, J.: Locality of temperature. Phys. Rev. X 4, 031019 (2014). arXiv:1309.0816

  19. De Roeck W., Maes C., Netočný K.: Quantum macrostates, equivalence of ensembles and an H-theorem. J. Math. Phys. 47, 073303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bhatia, R.:Perturbation bounds for matrix eigenvalues. SIAM Class. Appl. Math. (2007)

  21. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (2006)

    MATH  Google Scholar 

  22. Diaconis P., Freedman D.: Finite exchangeable sequences. Ann. Probab. 8(4), 745–764 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Deserno, M.: Microcanonical and canonical two-dimensional Ising model: an example. http://www.cmu.edu/biolphys/deserno/pdf/microcan

  24. Huang K.: Statistical Mechanics. John Wiley & Sons, New York (1987)

    MATH  Google Scholar 

  25. Brandão, F.G.S.L., Harrow, A.W., Horodecki, M.: Local random quantum circuits are approximate polynomial-designs. arXiv:1208.0692

  26. Low, R.A.: Large deviation bounds for k-designs. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 465, pp. 3289–3308. The Royal Society, London (2009)

  27. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 813-822 (2008)

  28. Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin-Heidelberg (2008)

    MATH  Google Scholar 

  29. Zyczkowski K.: Rényi extrapolation of Shannon entropy. Open Sys. Inf. Dyn. 10, 297–310 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  31. Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  32. Masanes L.: Area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  33. Deutsch J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  34. Srednicki M.: Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus P. Müller.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M.P., Adlam, E., Masanes, L. et al. Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems. Commun. Math. Phys. 340, 499–561 (2015). https://doi.org/10.1007/s00220-015-2473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2473-y

Keywords