Skip to main content

Advertisement

Log in

The Penrose Inequality for Asymptotically Locally Hyperbolic Spaces with Nonpositive Mass

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the asymptotically locally hyperbolic setting it is possible to have metrics with scalar curvature ≥ −6 and negative mass when the genus of the conformal boundary at infinity is positive. Using inverse mean curvature flow, we prove a Penrose inequality for these negative mass metrics. The motivation comes from a previous result of P. Chruściel and W. Simon, which states that the Penrose inequality we prove implies a static uniqueness theorem for negative mass Kottler metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonini V., Qing J.: A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann. Henri Poincaré 9(2), 347–372 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Boucher W., Gibbons G.W., Horowitz G.T.: Uniqueness theorem for anti-de Sitter spacetime. Phys. Rev. D (3) 30(12), 2447–2451 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bray H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bray H.L., Lee D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle S., Chodosh O.: A volume comparison theorem for asymptotically hyperbolic manifolds. Commun. Math. Phys. 332(2), 839–846 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bunting G.L., Masood-ul Alam A.K.M.: Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19(2), 147–154 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Carrasco A., Mars M.: Uniqueness theorem for static spacetimes containing marginally outer trapped surfaces. Class. Quantum Gravity 28(17), 175018, 30 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chruściel P.T., Herzlich M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)

    Article  Google Scholar 

  9. Chruściel P.T., Simon W.: Towards the classification of static vacuum spacetimes with negative cosmological constant. J. Math. Phys. 42(4), 1779–1817 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. de Lima, L.L., Frederico, G.: A Penrose inequality for asymptotically locally hyperbolic graphs. arXiv:1304.7887 (2013)

  11. Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D (3) 60(10), 104039, 11 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  12. Galloway G.J., Surya S., Woolgar E.: On the geometry and mass of static, asymptotically AdS spacetimes, and the uniqueness of the AdS soliton. Commun. Math. Phys. 241(1), 1–25 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Horowitz G.T., Myers R.C.: AdS-CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D (3) 59(2), 026005, 12 (1999)

    MathSciNet  ADS  Google Scholar 

  14. Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  16. Meeks W. III, Simon L., Yau S.T.: Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann. Math. (2) 116(3), 621–659 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miao P.: A remark on boundary effects in static vacuum initial data sets. Class. Quantum Gravity 22(11), L53–L59 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Müller zum Hagen H., Robinson D.C., Seifert H.J.: Black holes in static vacuum space-times. Gen. Relativ. Gravit. 4, 53–78 (1973)

    Article  ADS  Google Scholar 

  19. Neves A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. II. J. Reine Angew. Math. 641, 69–93 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Nunes I.: Rigidity of area-minimizing hyperbolic surfaces in three-manifolds. J. Geom. Anal. 23, 1290–1302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qing, J.: On the rigidity for conformally compact Einstein manifolds. Int. Math. Res. Notices (21), 1141–1153 (2003)

  23. Wang X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    MATH  Google Scholar 

  24. Wang X.: On the uniqueness of the AdS spacetime. Acta Math. Sin. (Engl. Ser.) 21(4), 917–922 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan A. Lee.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.A., Neves, A. The Penrose Inequality for Asymptotically Locally Hyperbolic Spaces with Nonpositive Mass. Commun. Math. Phys. 339, 327–352 (2015). https://doi.org/10.1007/s00220-015-2421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2421-x

Keywords

Navigation