Skip to main content
Log in

Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the (k + 1)-Equals Ideal

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that for Jack parameter α = −(k + 1)/(r − 1), certain Jack polynomials studied by Feigin–Jimbo–Miwa–Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read–Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein–Gelfand–Gelfand type; we prove this for the ideal of the (k + 1)-equals arrangement in the case when the number of coordinates n is at most 2k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the (k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baratta, W., Forrester, P.J.: Jack polynomial fractional quantum Hall states and their generalizations. Nucl. Phys. B 843(1), 362–381 (2011). arxiv:1007.2692v2

    Google Scholar 

  2. Berest, Y. Etingof, P., Ginzburg, V.: Finite dimensional representations of rational Cherednik algebras. Int. Math. Res. Not. 19, 1053–1088 (2003). arxiv:math/0208138v3

    Google Scholar 

  3. Bernevig, B.A., Haldane, F.D.M.: Fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 100, 246802 (2008). arxiv:0707.3637v2

    Google Scholar 

  4. Bernevig, B.A., Haldane, F.D.M.: Generalized clustering conditions of Jack Polynomials at negative Jack parameter α. Phys. Rev. B 77, 184502 (2008). arxiv:0711.3062v2

  5. Bezrukavnikov, R., Etingof, P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. (N.S.) 14(3–4), 397–425 (2009). arxiv:0803.3639v6

  6. Boij, M., Söderberg J.: Graded Betti numbers of Cohen–Macaulay modules and the multiplicity conjecture. J. Lond. Math. Soc. (2) 78(1), 85–106 (2008). arxiv:math/0611081v2

    Google Scholar 

  7. Cherednik I.: An analogue of the character formula for Hecke algebras. Funct. Anal. Appl. 21(2), 94–95 (1987)

    Article  MathSciNet  Google Scholar 

  8. Desrosiers, P., Lapointe, L., Mathieu, P.: Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals. Commun. Math. Phys. 316(2), 395–440 (2012). arxiv:1109.2832v2

    Google Scholar 

  9. Dunkl, C.: Singular polynomials for the symmetric groups. Int. Math. Res. Not. 67, 3607–3635 (2004). arxiv:math/0403277v1

  10. Dunkl C., Luque J.-G.: Clustering properties of rectangular Macdonald polynomials (2012), arxiv:1204.5117v3

  11. Eisenbud, D.: The Geometry of Syzygies. In: Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)

  12. Eisenbud, D., Fløystad, G., Weyman J.: The existence of equivariant pure free resolutions. Ann. Inst. Fourier (Grenoble) 61(3), 905–926 (2011). arxiv:0709.1529v5

    Google Scholar 

  13. Eisenbud, D., Schreyer, F.-O.: Betti numbers of graded modules and cohomology of vector bundles. J. Am. Math. Soc. 22(3), 859–888 (2009). arxiv:0712.1843v3

  14. Eisenbud, D., Schreyer, F.-O.: Boij–Söderberg theory. In: Combinatorial aspects of commutative algebra and algebraic geometry, pp. 35–48, Abel Symp., 6. Springer, Berlin (2011)

  15. Enomoto, N.: Composition factors of polynomial representation of DAHA and crystallized decomposition numbers. J. Math. Kyoto Univ. 49(3), 441–473 (2009). arxiv:math/0604368v1

    Google Scholar 

  16. Enright T.J.M., Hunziker M.: Resolutions and Hilbert series of determinantal varieties and unitary highest weight modules. J. Algebra 273(2), 608–639 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Enright T.J., Hunziker M.: Resolutions and Hilbert series of the unitary highest weight modules of the exceptional groups. Represent. Theory 8, 15–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Enright, T.J., Willenbring, J.F.: Hilbert series, Howe duality and branching for classical groups. Ann. Math. (2) 159, 37–375 (2004)

    Google Scholar 

  19. Etingof, P., Gorsky, E., Losev, I.: Representations of rational Cherednik algebras with minimal support and torus knots, arxiv:1304.3412v3

  20. Etingof, P., Ma, X.: Lecture notes on Cherednik algebras (2010). arxiv:1001.0432v4

  21. Etingof P., Stoica, E.: (with an appendix by S. Griffeth), Unitary representations of rational Cherednik algebras. Represent. Theory 13, 349–370 (2009). arxiv:0901.4595v3

    Google Scholar 

  22. Feigin, B. Jimbo, M. Miwa, T. Mukhin, E.L.: A differential ideal of symmetric polynomials spanned by Jack polynomials at β = −(r − 1)/(k + 1). Int. Math. Res. Not. 23, 1223–1237 (2002) arxiv:math/0112127v1

    Google Scholar 

  23. Feigin, M.: Generalized Calogero-Moser systems from rational Cherednik algebras. Selecta Math. (N.S.) 18(1), 253–281 (2012) arxiv:0809.3487v2

  24. Feigin, M., Shramov, C.: On unitary submodules in the polynomial representations of rational Cherednik algebras. Int. Math. Res. Not. 15, 3375–3414 (2012) arxiv:1010.4245v2

    Google Scholar 

  25. Fløystad, G.: Boij–Söderberg theory: introduction and survey. In: Progress in Commutative Algebra, vol. 1, pp. 1–54, de Gruyter, Berlin (2012) arxiv:1106.0381v2

  26. Ginzburg, V., Guay, N. Opdam, E., Rouquier, R.: On the category \({\mathcal{O}}\) for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)

    Google Scholar 

  27. Grayson D.R., Stillman M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  28. Griffeth, S.: Orthogonal functions generalizing Jack polynomials. Trans. Am. Math. Soc. 362, 6131–6157 (2010) arxiv:0707.0251v3

    Google Scholar 

  29. Griffeth, S.: Towards a combinatorial representation theory for the rational Cherednik algebra of type G(r, p, n). Proc. Edinb. Math. Soc. (2) 53(2), 419–445 (2010). math/0612733v3

  30. Griffeth, S.: Unitary representations of rational Cherednik algebras, II, (2011). arxiv:1106.5094v1

  31. Haiman, M., Woo, A.: Garnir modules, Springer fibers, and Ellingsrud-Strømme cells on the Hilbert scheme of points. In preparation

  32. Kasatani, M.: Subrepresentations in the polynomial representation of the double affine Hecke algebra of type GL n at \({t^{k+1}q^{r-1}=1}\). Int. Math. Res. Not. 28, 1717–1742 (2005). arxiv:math/0501272v1

  33. Knop, F., Sahi, S.: A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128(1), 9–22 (1997). arxiv:q-alg/9610016v1

    Google Scholar 

  34. Lascoux A.: Syzygies des variétés déterminantales. Adv. Math. 30, 202–237 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  35. Li S., Li W.: Independence numbers of graphs and generators of ideals. Combinatorica 1(1), 55–61 (1981)

    MATH  MathSciNet  Google Scholar 

  36. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. In: Oxford Mathematical Monographs, 2nd edn. Oxford (1995)

  37. Ruff O.: Completely splittable representations of symmetric groups and affine Hecke algebras. J. Algebra 305(2), 1197–1211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sidman, J.: Defining ideals of subspace arrangements. Int. Math. Res. Not. 15, 713–727 (2004). arxiv:math/0307280v2

    Google Scholar 

  39. Wilson, K.: Three perspectives on n points in \({\mathbb{P}^{n-2}}\), Ph.D. thesis, Princeton University (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven V Sam.

Additional information

Communicated by N. Reshetikhin

SG acknowledges the financial support of Fondecyt Proyecto Regular 1110072. SS was supported by a Miller research fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamaere, C.B., Griffeth, S. & Sam, S.V. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the (k + 1)-Equals Ideal. Commun. Math. Phys. 330, 415–434 (2014). https://doi.org/10.1007/s00220-014-2010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2010-4

Keywords

Navigation