Skip to main content
Log in

Quenched Limit Theorems for Nearest Neighbour Random Walks in 1D Random Environment

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that random walks in a one dimensional random environment can exhibit subdiffusive behavior due to the presence of traps. In this paper we show that the passage times of different traps are asymptotically independent exponential random variables with parameters forming, asymptotically, a Poisson process. This allows us to prove weak quenched limit theorems in the subdiffusive regime where the contribution of traps plays the dominating role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. Math. Surv. & Monographs 50 Providence, RI: Amer. Math. Soc., 1997

  2. Bolthausen E., Goldsheid I.: Recurrence and transience of random walks in random environments on a strip. Commun. Math. Phys. 214, 429–447 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Chernov N., Dolgopyat D.: Anomalous current in periodic Lorentz gases with infinite horizon. Russ. Math. Surv. 64, 651–699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Enriquez, N., Sabot, C., Tournier, L., Zindy, O.: Stable fluctuations for ballistic random walks in random environment on \({\mathbb{Z}}\). http://arXiv.org/abs/preprint1004.1333vL [math.PR], 2010

  5. Enriquez, N., Sabot, C., Tournier, L., Zindy, O.: Annealed and quenched fluctuations for ballistic random walks in random environment on Z. Preprint

  6. Enriquez N., Sabot C., Zindy O.: Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France 137, 423–452 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Enriquez N., Sabot C., Zindy O.: Limit laws for transient random walks in random environment on \({\mathbb{Z} }\). Ann. Institut Fourier 59(6), 2469–2508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gantert N., Shi Z.: Many visits to a single site by a transient random walk in random environment. Stoch. Proc. Appl. 99, 159–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldsheid I.: Simple transient random walks in one-dimensional random environment: the central limit theorem. Prob. Th., Rel. Fields 139, 41–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldsheid I.: Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip. Prob. Th., Rel. Fields 141, 471–511 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guivarch, Y.: Heavy tail properties of stationary solutions of multidimensional stochastic recursions. In: Dynamics & stochastics, IMS Lecture Notes Monogr. Ser. 48. Beachwood, OH: Inst. Math. Stat. 2006, pp. 85–99

  12. Guivarch Y., Le Page E.: On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Erg. Th. Dyn. Sys. 28, 423–446 (2008)

    MathSciNet  Google Scholar 

  13. Kesten H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kesten H.: Renewal theory for functionals of a Markov chain with general state space. Ann. Prob. 2, 355–386 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kesten H., Kozlov M., Spitzer F.: A limit law for random walk in a random environment. Compositio Math. 30, 145–168 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Peterson, J.: Limiting distributions and large deviations for random walks in random environments. PhD Thesis - University of Minnesota, 2008

  17. Peterson, J.: Quenched limits for transient, ballistic, sub-gaussian one-dimensional random walk in random environment. Ann. Inst. H. Poincaré, Prob. Stat. 45, 685–709 (2009)

    Google Scholar 

  18. Peterson, J., Samorodnitsky, G.: Weak quenched limiting distributions for transient one-dimensional random walk in a random environment http://arxiv.org/abs/1011.6366v3 [math.PR], 2010

  19. Peterson J., Zeitouni O.: Quenched limits for transient zero-speed one-dimensional random walk in random environment. Ann. Prob. 37, 143–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Resnick, S.: Extreme Values, Regular Variation And Point Processes. Belin-Heidelberg-New York: Springer, 2007, 320 pp

  21. Revesz, P.: Random walk in random and non-random environments. 2nd ed. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2005, xvi+380 pp

  22. Samorodnitsky, G., Taqqu, M.: Stable non-Gaussian random processes, Boca Ratan, FL: Chapman & Hall/CRC, 1994, 640 pp

  23. Shi Z.: A local time curiosity in random environment. Stoch. Process. Appl. 76, 231–250 (1998)

    Article  MATH  Google Scholar 

  24. Shiga, T., Tanaka, H.: Infinitely divisible random probability distributions with an application to a random motion in a random environment. Electron. J. Probab. 11, paper 44, 1144–1183 (2006)

    Google Scholar 

  25. Solomon F.: Random walks in a random environment. Ann. Prob. 3, 1–31 (1975)

    Article  MATH  Google Scholar 

  26. Sinai, Ya. G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Prob. Appl. 27, 256–268 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Goldsheid.

Additional information

Communicated by F. L. Toninelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgopyat, D., Goldsheid, I. Quenched Limit Theorems for Nearest Neighbour Random Walks in 1D Random Environment. Commun. Math. Phys. 315, 241–277 (2012). https://doi.org/10.1007/s00220-012-1539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1539-3

Keywords

Navigation