Skip to main content
Log in

Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup {S(t)} t ≥ 0. Suppose that {S(t)} t ≥ 0 possesses a global attractor \({\mathcal{A}}\). We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions \({\mathfrak{m}_0}\), that there exists an invariant probability measure \({\mathfrak{m}}\), whose support is contained in \({\mathcal{A}}\), such that

$$\int_{X} \varphi(x) {\rm d}\mathfrak{m}(x) = \underset{t \rightarrow \infty}{\rm LIM}\frac{1}{T} \int_0^T \int_X \varphi(S(t) x) {\rm d}\mathfrak{m}_0(x) {\rm d}t,$$

for all observables φ living in a suitable function space of continuous mappings on X.

This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1–2):521–540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225–250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space.

Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery’s model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential equations, that is equations with delays in the time derivative terms. These systems may arise in the study of wave propagation problems coming from certain first order hyperbolic partial differential equations; for example for the study of line transmission problems. For the second example the phase space is \({X= C([-\tau,0],\mathbb{R}^n)}\), for some delay τ > 0, so that X is not reflexive in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abolinya V.È., Myškis A.D.: Mixed problems for quasi-linear hyperbolic systems in the plane. Mat. Sb. (N.S.) 50(92), 423–442 (1960)

    MathSciNet  Google Scholar 

  2. Agranovich Y.Y., Sobolevskii P.E.: Motion of nonlinear visco-elastic fluid. Nonlinear Anal. 32(6), 755–760 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blakely, J.N., Corron, N.J.: Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator. Chaos 14, 1035 (2004)

    Google Scholar 

  4. Bercovici, H., Constantin, P., Foias, C., Manley, O.P.: Exponential decay of the power spectrum of turbulence. J. Stat. Phys. 80(3–4), 579–602 (1995)

    Google Scholar 

  5. Bartle R.G., Dunford N., Schwartz J.: Weak compactness and vector measures. Canad. J. Math. 7, 289–305 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P.: Convergence of probability measures. Second ed., Wiley Series in Probability and Statistics: Probability and Statistics, New York: John Wiley & Sons Inc., 1999

  7. Brunovský P., Komorník J.: Ergodicity and exactness of the shift on C[0,∞) and the semiflow of a first-order partial differential equation. J. Math. Anal. Appl. 104(1), 235–245 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barton D.A.W., Krauskopf B., Wilson R.E.: Homoclinic bifurcations in a neutral delay model of a transmission line oscillator. Nonlinearity 20(4), 809–829 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Brayton R.K., Miranker W.L.: A stability theory for nonlinear mixed initial boundary value problems. Arch. Rat. Mech. Anal. 17, 358–376 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chepyzhov V.V., Conti M., Pata V.: A minimal approach to the theory of global attractors. Disc. Cont. Dyn. Sys. 32(6), 2079–2088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chekroun M.D., Di Plinio F., Glatt-Holtz N.E., Pata V.: Asymptotics of the Coleman-Gurtin model. Disc. Cont. Dyn. Syst. Ser. S 4(2), 351–369 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Coleman B.D., Gurtin M.E.: Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18, 199–208 (1967)

    Article  MathSciNet  Google Scholar 

  13. Cavaterra C., Grasselli M.: Robust exponential attractors for population dynamics models with infinite time delay. Disc. Cont. Dyn. Syst. Ser. B 6(5), 1051–1076 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chepyzhov V.V., Gatti S., Grasselli M., Miranville A., Pata V.: Trajectory and global attractors for evolution equations with memory. Appl. Math. Lett. 19(1), 87–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chekroun, M.D., Glatt-Holtz, N.: Invariant measures for dissipative non-autonomous dynamical systems. In: preparation

  16. Chekroun, M.D., Glatt-Holtz, N.: The stochastic navier-stokes equations with memory: Random attractors and invariant measures. In preparation

  17. Chueshov, I.D.: Introduction to the theory of infinite dimensional dissipative systems. University Lectures in Contemporary Mathematics, Kharkiv: AKTA, 1999

  18. Cruz M.A., Hale J.K.: Stability of functional differential equations of neutral type. J. Diff. Eq. 7, 334–355 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Chepyzhov V.V., Pata V.: Some remarks on stability of semigroups arising from linear viscoelasticity. Asy. Anal. 46(3–4), 251–273 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Conti M., Pata V., Squassina M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. 55(1), 169–215 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Physica D 240, 1685–1700 (2011)

    Google Scholar 

  22. Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics. American Mathematical Society Colloquium Publications, Vol. 49, Providence, RI: Amer. Math. Soc., 2002

  23. Dafermos C.M.: Asymptotic stability in viscoelasticity. Arch. Rat. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dawidowicz A.L.: On the existence of an invariant measure for the dynamical system generated by partial differential equation. Ann. Polon. Math. 41(2), 129–137 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Debussche, A.: Ergodicity results for the stochastic navier-stokes equations: an introduction. To appear

  26. Da Prato, G., Debussche, A.: Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9) 82(8), 877–947 (2003)

    Google Scholar 

  27. Di Plinio F., Pata V.: Robust exponential attractors for the strongly damped wave equation with memory. I. Russ. J. Math. Phys. 15(3), 301–315 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Di Plinio F., Pata V., Zelik S.: On the strongly damped wave equation with memory. Indiana Univ. Math. J. 57(2), 757–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Da Prato, G., Zabczyk, J.: Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, Vol. 229, Cambridge: Cambridge University Press, 1996

  30. Dugundji J.: An extension of Tietze’s theorem. Pacific J. Math. 1, 353–367 (1951)

    MathSciNet  MATH  Google Scholar 

  31. Flandoli F., Maslowski B.: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172(1), 119–141 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes equations and turbulence. Encyclopedia of Mathematics and its Applications, Vol. 83, Cambridge: Cambridge University Press, 2001

  33. Francfort G.A., Suquet P.M.: Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Rat. Mech. Anal. 96(3), 265–293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Foias, C., Temam, R.: On the stationary statistical solutions of the navier-stokes equations and turbulence. Publications Mathematiques D’Orsay, no. 120-75-28 (1975)

  35. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: Memory relaxation of the one-dimensional Cahn-Hilliard equation. In: Dissipative phase transitions, Ser. Adv. Math. Appl. Sci., Vol. 71, Hackensack, NJ: World Sci. Publ., 2006, pp. 101–114

  36. Giorgi C., Grasselli M., Pata V.: Uniform attractors for a phase-field model with memory and quadratic nonlinearity. Indiana Univ. Math. J. 48(4), 1395–1445 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gatti S., Grasselli M., Pata V.: Exponential attractors for a phase-field model with memory and quadratic nonlinearities. Indiana Univ. Math. J. 53(3), 719–753 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gatti S., Giorgi C., Pata V.: Navier-Stokes limit of Jeffreys type flows. Phys. D 203(1–2), 55–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resources Research 44(W11416), 1–19 (2008)

  40. Gatti S., Miranville A., Pata V., Zelik S.: Attractors for semi-linear equations of viscoelasticity with very low dissipation. Rocky Mountain J. Math. 38(4), 1117–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous systems with memory.

  42. Gurtin M.E., Pipkin A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rat. Mech. Anal. 31(2), 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  43. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous dynamical systems with memory. In: Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Vol. 50, Basel: Birkhäuser, 2002, pp. 155–178

  44. Grasselli, M., Pata, V.: Attractors of phase-field systems with memory. In: Mathematical Methods and Models in Phase Transitions, New York: Nova Sci. Publ., 2005, pp. 157–175

  45. Grasselli M., Pata V.: A reaction-diffusion equation with memory. Disc. Cont. Dyn. Syst. 15(4), 1079–1088 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Galanti E., Tziperman E.: Enso’s phase locking to the seasonal cycle in the fast sst, fast wave, and mixed mode regimes. J. Atmospheric Sci. 57, 2936–2950 (2000)

    Article  ADS  Google Scholar 

  47. Hale, J.K.: Theory of functional differential equations. Second ed., Appl. Mathematical Sciences, Vol. 3, New York: Springer-Verlag, 1977

  48. Hale, J.K.: Asymptotic behavior of dissipative systems. In: Mathematical Surveys and Monographs, Vol. 25, Providence, RI: Amer. Math. Soc., 1988

  49. Hale J.K., Cruz M.A.: Asymptotic behavior of neutral functional differential equations. Arch. Rat. Mech. Anal. 34, 331–353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hale, J.K., Lunel, S.M.V.: Introduction to functional differential equations. Berlin- Heidelberg-New York: Springer-Verlag, 1993

  51. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164(3), 993–1032 (2006)

    Google Scholar 

  52. Hairer M., Mattingly J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic pdes. Electron. J. Probab. 16(23), 658–738 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Jin F.-F., Neelin J.D.: Modes of interannual tropical ocean–atmosphere interaction—a unified view. part i: Numerical results. J. Atmospheric Sci. 50, 3477–3503 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  54. Jin F.-F., Neelin J.D.: Modes of interannual tropical ocean–atmosphere interaction—a unified view. part iii: Analytical results in fully coupled cases. J. Atmospheric Sci. 50, 3523–3540 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  55. Joseph, D.D.: Fluid dynamics of viscoelastic liquids. Applied Mathematical Sciences, Vol. 84, New York: Springer-Verlag, 1990

  56. Kyrychko Y.N., Hogan S.J.: On the use of delay equations in engineering applications. J. Vibration and Control 16, 943–960 (2010)

    Article  MathSciNet  Google Scholar 

  57. Kuksin S., Shirikyan A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221(2), 351–366 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Ladyzhenskaya, O.: Attractors for semigroups and evolution equations, Lezioni Lincee. [Lincei Lectures], Cambridge: Cambridge University Press, 1991

  59. Lasota A.: Invariant measures and a linear model of turbulence. Rend. Sem. Mat. Univ. Padova 61, 39–48 (1979)

    MathSciNet  MATH  Google Scholar 

  60. Lax, P.D.: Functional analysis. Pure and Applied Mathematics (New York), New York: Wiley-Interscience John Wiley & Sons, 2002

  61. Lukaszewicz G., Real J., Robinson J.C.: Invariant measures for dissipative systems and generalised banach limits. J. Dyn. Diff. Eq. 23(2), 225–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Michiels, W., Niculescu, S.-I.: Stability and stabilization of time-delay systems, Advances in Design and Control, Vol. 12, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2007

  63. Ma Q., Wang S., Zhong C.: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ. Math. J. 51(6), 1541–1559 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., Amsterdam: Elsevier/North-Holland, 2008, pp. 103–200

  65. Niculescu, S.-I.: On robust stability of neutral systems. Kybernetika (Prague) 37(3), 253–263 (2001)

    Google Scholar 

  66. Orlov V.P.: On the Oldroyd model of a viscoelastic fluid. Funkt. Anal. i Priloz. 33((1), 83–87 (1999)

    Google Scholar 

  67. Pao C.V.: Systems of parabolic equations with continuous and discrete delays. J. Math. Anal. Appl. 205(1), 157–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. Pata V., Zucchi A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11(2), 505–529 (2001)

    MathSciNet  MATH  Google Scholar 

  69. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35, Harlow: Longman Scientific & Technical, 1987

  70. Robinson, J.: Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, 2001

  71. Rosa R.: The global attractor for the 2 D Navier-Stokes flow on some unbounded domains. Nonlinear Anal. 32(1), 71–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. Rudin, W.: Real and complex analysis. Third ed., New York: McGraw-Hill Book Co., 1987

  73. Rudnicki R.: Strong ergodic properties of a first-order partial differential equation. J. Math. Anal. Appl. 133(1), 14–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  74. Rudnicki R.: Chaos for some infinite-dimensional dynamical systems. Math. Methods Appl. Sci. 27(6), 723–738 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Smirnov, V.I.: A course of higher mathematics. Vol. 2, Oxford: Pergamon Press, 1964

  76. Smith, H.: An introduction to delay differential equations with applications to the life sciences. Texts in Applied Mathematics, Vol. 57, New York: Springer, 2011

  77. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Second ed., Applied Mathematical Sciences, Vol. 68, New York: Springer-Verlag, 1997

  78. Temam, R.: Navier-Stokes equations: Theory and numerical analysis. Providence, RI: AMS Chelsea Publishing, 2001

  79. Wang X.: Upper semi-continuity of stationary statistical properties of dissipative systems. Disc. Cont. Dyn. Syst. 23(1–2), 521–540 (2009)

    MATH  Google Scholar 

  80. Wu, J.: Theory and applications of partial functional-differential equations. Applied Mathematical Sciences, Vol. 119, New York: Springer-Verlag, 1996

  81. Zachmanoglou, E.C., Thoe, D.W.: Introduction to partial differential equations with applications. Second ed., New York: Dover Publications Inc., 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan E. Glatt-Holtz.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekroun, M.D., Glatt-Holtz, N.E. Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications. Commun. Math. Phys. 316, 723–761 (2012). https://doi.org/10.1007/s00220-012-1515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1515-y

Keywords

Navigation