Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Communications in Mathematical Physics
  3. Article

Symplectic Geometry of Entanglement

  • Open access
  • Published: 13 May 2011
  • Volume 305, pages 441–468, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Communications in Mathematical Physics Aims and scope Submit manuscript
Symplectic Geometry of Entanglement
Download PDF
  • Adam Sawicki1,
  • Alan Huckleberry2 &
  • Marek Kuś1 
  • 1195 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

We present a description of entanglement in composite quantum systems in terms of symplectic geometry. We provide a symplectic characterization of sets of equally entangled states as orbits of group actions in the space of states. In particular, using the Kostant-Sternberg theorem, we show that separable states form a unique symplectic orbit, whereas orbits of entangled states are characterized by different degrees of degeneracy of the canonical symplectic form on the complex projective space. The degree of degeneracy may be thus used as a new geometric measure of entanglement. The above statements remain true for systems with an arbitrary number of components, moreover the presented method is general and can be applied also under different additional symmetry conditions stemming, e.g., from the indistinguishability of particles. We show how to calculate the degeneracy for various multiparticle systems providing also simple criteria of separability.

Article PDF

Download to read the full article text

Similar content being viewed by others

Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems

Article 16 April 2024

The Local Orthogonality Between Quantum States and Entanglement Decomposition

Article 19 January 2016

Target space entanglement in quantum mechanics of fermions and matrices

Article Open access 10 August 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Differential Geometry
  • Quantum Correlation and Entanglement
  • Hyperbolic Geometry
  • Algebraic Geometry
  • Geometry
  • Mathematical Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Werner R.: Quantum states with Einstein-Podolsky-Rosen correlation admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  3. Schliemann J., Cirac J.I., Kuś M., Lewenstein M., Loss D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64, 022303 (2001)

    Article  ADS  Google Scholar 

  4. Eckert K., Schliemann J., Bruß D., Lewenstein M.: Quantum correlations in systems of identical particles. Ann. Phys. 299, 88–127 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Ghirardi G., Marinatto L., Weber T.: Entanglement and properties of composite quantum systems, a conceptual and mathematical analysis. J. Stat. Phys. 108, 49–122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Y.S., Zeng B., Liu X.S., Long G.L.: Entanglement in a two-identical-particle system. Phys. Rev. A 64, 054302 (2001)

    Article  ADS  Google Scholar 

  7. Paškauskas R., You L.: Quantum correlations in two-boson wave functions. Phys. Rev. A 64, 042310 (2001)

    Article  ADS  Google Scholar 

  8. Klyachko, A.: Dynamic symmetry approach to entanglement. http://arxiv.org/alos/0802.4008v1 [quantph], (2008)

  9. Bengtsson I.: A curious geometrical fact about entanglement. AIP Conf. Proc. 962(1), 34–38 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Kuś M., Bengtsson I.: Classical quantum states. Phys. Rev. A 80, 022319 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Kostant, B., Sternberg, B.: Symplectic projective orbits. In: New directions in applied mathematics, papers presented April 25/26, 1980, on the occasion of the Case Centennial Celebration (Hilton, P. J., Young, G. S., eds.) New York: Springer, 1982, pp 81–84

  12. Guillemin V., Sternberg S.: Symplectic techniques in physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  13. Perelomov A.: Generalized coherent states and their applications. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  14. Hall B.C.: Lie groups, Lie algebras, and representations, an elementary introduction. Springer, New York (2003)

    MATH  Google Scholar 

  15. Kirillov, A.A.: Lectures on the orbit method. Graduate Studies in Mathematics Vol. 64. Providence, RI: Amer. Math. Soc., 2004

  16. Horn R.A., Johnson C.R.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  17. Sinołe¸cka M.M.,  Życzkowski M., Kuś K.: Manifolds of equal entanglement for composite quantum system. Acta Phys. Pol. 33, 2081–2095 (2002)

    ADS  Google Scholar 

  18. Fulton W., Harris J.: Representation theory. A first course. Springer, New York (1991)

    MATH  Google Scholar 

  19. Kotowski M., Kotowski M., Kuś M.: Universal nonlinear entanglement witnesses. Phys. Rev. A 81, 062318 (2010)

    Article  ADS  Google Scholar 

  20. Kraus B.: Local unitary equivalence of multipartite pure states. Phys. Rev. Lett. 104, 020504 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The support by SFB/TR12 Symmetries and Universality in Mesoscopic Systems program of the Deutsche Forschungsgemeischaft and Polish MNiSW grant DFG-SFB/38/2007 is gratefully acknowledged.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warszawa, Poland

    Adam Sawicki & Marek Kuś

  2. Fakultät für Mathematik, Ruhr-Universität Bochum, 44780, Bochum, Germany

    Alan Huckleberry

Authors
  1. Adam Sawicki
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Alan Huckleberry
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Marek Kuś
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Adam Sawicki.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Sawicki, A., Huckleberry, A. & Kuś, M. Symplectic Geometry of Entanglement. Commun. Math. Phys. 305, 441–468 (2011). https://doi.org/10.1007/s00220-011-1259-0

Download citation

  • Received: 19 July 2010

  • Accepted: 10 December 2010

  • Published: 13 May 2011

  • Issue Date: July 2011

  • DOI: https://doi.org/10.1007/s00220-011-1259-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Singular Value Decomposition
  • Entangle State
  • Symplectic Form
  • Cartan Subalgebra
  • Symplectic Geometry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature