Skip to main content
Log in

A New Variational Approach to the Stability of Gravitational Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the three dimensional gravitational Vlasov Poisson system which describes the mechanical state of a stellar system subject to its own gravity. A well-known conjecture in astrophysics is that the steady state solutions which are nonincreasing functions of their microscopic energy are nonlinearly stable by the flow. This was proved at the linear level by several authors based on the pioneering work by Antonov in 1961. Since then, standard variational techniques based on concentration compactness methods as introduced by P.-L. Lions in 1983 have led to the nonlinear stability of subclasses of stationary solutions of ground state type.

In this paper, inspired by pioneering works from the physics litterature (MNRAS 241:15, 1989), (Mon. Not. R. Astr. Soc. 144:189–217, 1969), (Mon. Not. R. Ast. Soc. 223:623–646, 1988) we use the monotonicity of the Hamiltonian under generalized symmetric rearrangement transformations to prove that non increasing steady solutions are the local minimizer of the Hamiltonian under equimeasurable constraints, and extract compactness from suitable minimizing sequences. This implies the nonlinear stability of nonincreasing anisotropic steady states under radially symmetric perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvino A., Trombetti G., Lions P.-L.: On optimization problems with prescribed rearrangements. Nonlinear Anal. 13(2), 185–220 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aly J.-J.: On the lowest energy state of a collisionless self-gravitating system under phase volume constraints. MNRAS 241, 15 (1989)

    MATH  MathSciNet  ADS  Google Scholar 

  3. Antonov A.V.: Remarks on the problem of stability in stellar dynamics. Soviet Astr., AJ. 4, 859–867 (1961)

    MathSciNet  ADS  Google Scholar 

  4. Antonov A.V.: Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution. J. Leningrad Univ. Se. Mekh. Astro. 7, 135–146 (1962)

    Google Scholar 

  5. Arnold V.I.: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. Dokl. 6, 773–776 (1965)

    Google Scholar 

  6. Arnold V.I.: Sur un principe variationel pour les ecoulements stationaires des liquides parfaits et ses applications aux problèmes de stabilité nonlinénaire. J. Mécanique 5, 29–43 (1966)

    Google Scholar 

  7. Arnold V.I.: Mathematical models of classical mechanics. Springer Verlag, New York (1980)

    Google Scholar 

  8. Batt J., Faltenbacher W., Horst E.: Stationary spherically symmetric models in stellar dynamics, Arch. Rat. Mech. Anal. 93, 159–183 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brézis, H.: Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Paris: Masson, 1983

  10. Binney J., Tremaine S.: Galactic Dynamics. NJ: Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  11. Cazenave T., Lions P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Chavanis P.-H.: Dynamical stability of collisionless stellar systems and barotropic stars: the nonlinear Antonov first law. Astronomy and Astrophysics 451(1), 109–123 (2006)

    Article  MATH  ADS  Google Scholar 

  13. Dolbeault J., Sánchez Ó., Soler J.: Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Rat. Mech. Anal. 171(3), 301–327 (2004)

    Article  MATH  Google Scholar 

  14. Doremus J.P., Baumann G., Feix M.R.: Stability of a Self Gravitating System with Phase Space Density Function of Energy and Angular Momentum. Astronomy and Astrophysics 29, 401 (1973)

    ADS  Google Scholar 

  15. Fridmann A.M., Polyachenko V.L.: Physics of gravitating systems. Springer-Verlag, Berlin-Heidelberg-New York (1984)

    Google Scholar 

  16. Gardner C.S.: Bound on the energy available from a plasma. Phys. Fluids 6, 839–840 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gillon D., Cantus M., Doremus J.P., Baumann G.: Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations. Astronomy and Astrophysics 50(3), 467–470 (1976)

    MathSciNet  ADS  Google Scholar 

  18. Guo Y.: Variational method for stable polytropic galaxies. Arch. Rat. Mech. Anal. 130, 163–182 (1999)

    Google Scholar 

  19. Guo Y., Lin Z.: Unstable and stable galaxy models. Comm. Math. Phys. 279(3), 789–813 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Guo Y., Rein G.: Stable steady states in stellar dynamics. Arch. Rat. Mech. Anal. 147, 225–243 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Guo Y., Rein G.: Isotropic steady states in galactic dynamics. Commun. Math. Phys. 219, 607–629 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Guo Y.: On the generalized Antonov’s stability criterion. Contemp. Math. 263, 85–107 (2000)

    Article  Google Scholar 

  23. Guo Y., Rein G.: A non-variational approach to nonlinear Stability in stellar dynamics applied to the King model. Commun. Math. Phys. 271, 489–509 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Hadźić M., Rein G.: Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case. Indiana Univ. Math. J. 56(5), 2453–2488 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kandrup H.E., Sygnet J.F.: A simple proof of dynamical stability for a class of spherical clusters. Astrophys. J. 298(1, part 1), 27–33 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. Kandrup H.E.: A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof. Astrophys. J. 370(1), 312–317 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  27. Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin), 13. Paris: Springer-Verlag, 1993

  28. Lemou M., Méhats F., Raphaël P.: Orbital stability and singularity formation for Vlasov-Poisson systems. C. R. Math. Acad. Sci. Paris 341(4), 269–274 (2005)

    MATH  MathSciNet  Google Scholar 

  29. Lemou M., Méhats F., Raphaël P.: On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system, Arch. Rat. Mech. Anal. 189(3), 425–468 (2008)

    Article  MATH  Google Scholar 

  30. Lemou M., Méhats F, Raphaël P.: Stable ground states for the relativistic gravitational Vlasov-Poisson system. Comm. Partial Diff. Eq. 34(7), 703–721 (2009)

    Article  MATH  Google Scholar 

  31. Lemou, M., Méhats, F,, Raphaël, P.: Ensemble inequivalence for the gravitational Vlasov-Poisson system, In preparation

  32. Lemou M., Méhats F., Raphaël P.: Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system. J. Amer. Math. Soc. 21(4), 1019–1063 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lieb, E.H., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, 14. Providence, RI: Amer. Math. Soc., 2001

  34. Lieb E.H., Yau H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112(1), 147–174 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Lin Z.: Nonlinear instability of periodic BGK waves for Vlasov-Poisson system. Comm. Pure Appl. Math. 58(4), 505–528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lin Z., Strauss W.A.: Linear stability and instability of relativistic Vlasov-Maxwell systems. Comm. Pure Appl. Math. 60(5), 724–787 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lin Z., Strauss W.A.: A sharp stability criterion for the Vlasov-Maxwell system. Invent. Math. 173(3), 497–546 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. . Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    MATH  Google Scholar 

  39. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    MATH  Google Scholar 

  40. Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent Math. 105(2), 415–430 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Lynden-Bell D.: The Hartree-Fock exchange operator and the stability of galaxies. Mon. Not. R. Astr. Soc. 144, 189–217 (1969)

    ADS  Google Scholar 

  42. Lynden-Bell, D.: Lectures on stellar dynamics. Galactic dynamics and N-body simulations. Lecture Notes in Phys. 433, Berlin, Springer, 1994, pp. 3–31

  43. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences, 96. New York: Springer-Verlag, 1994

  44. Mossino, J.: Inégalités isopérimétriques et applications en physique. (French) [Isoperimetric inequalities and applications to physics] Travaux en Cours. [Works in Progress]. Paris: Hermann, 1984

  45. Marchioro C., Pulvirenti M.: Some considerations on the nonlinear stability of stationary planar Euler flows. Commun. Math. Phys. 100(3), 343–354 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Perez J., Aly J.-J.: Stability of spherical stellar systems -I. Analytical results. Monthly. Not. Royal. Astronomical Soc. 280, 689–699 (1996)

    ADS  Google Scholar 

  47. Pfaffelmoser K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eq. 95, 281–303 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  48. Sánchez Ó., Soler J.: Orbital stability for polytropic galaxies. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 781–802 (2006)

    Article  MATH  ADS  Google Scholar 

  49. Schaeffer J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Comm. Part. Diff. Eq. 16, 1313–1335 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Schaeffer J.: Steady States in Galactic Dynamics. Arch. Rat. Mech. Anal. 172, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Serre D.: Sur le principe variationnel des équations de la mécanique des fluides parfaits. [On the variational principle for the equations of perfect fluid dynamics] RAIRO Modél. Math. Anal. Numér. 27(6), 739–758 (1993)

    MATH  MathSciNet  Google Scholar 

  52. Sygnet J.-F., Des Forets G., Lachieze-Rey M., Pellat R.: Stability of gravitational systems and gravothermal catastrophe in astrophysics. Astrophys. J. 276(2), 737–745 (1984)

    Article  ADS  Google Scholar 

  53. Wan Y.-H.: On nonlinear stability of isotropic models in stellar dynamics. Arch. Ration. Mech. Anal. 147(3), 245–268 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  54. Wiechen H., Ziegler H.J., Schindler K.: Relaxation of collisionless self gravitating matter: the lowest energy state. Mon. Mot. R. Ast. Soc. 223, 623–646 (1988)

    ADS  Google Scholar 

  55. Wolansky G.: On nonlinear stability of polytropic galaxies. Ann. Inst. Henri Poincaré 16, 15–48 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Wolansky G., Ghil M.: Nonlinear Stability for Saddle Solutions of Ideal Flows and Symmetry Breaking. Commun. Math. Phys. 193, 713–736 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Méhats.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemou, M., Méhats, F. & Raphaël, P. A New Variational Approach to the Stability of Gravitational Systems. Commun. Math. Phys. 302, 161–224 (2011). https://doi.org/10.1007/s00220-010-1182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1182-9

Keywords

Navigation