Skip to main content
Log in

Deformation Quasi-Hopf Algebras of Non-semisimple Type from Cochain Twists

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a symmetric decomposition \({\mathfrak g=\mathfrak h\oplus \mathfrak p}\) of a semisimple Lie algebra \({\mathfrak g}\), we define the notion of a \({\mathfrak p}\)-contractible quantized universal enveloping algebra (QUEA): for these QUEAs the contraction \({\mathfrak g\rightarrow\mathfrak g_0}\) making \({\mathfrak p}\) abelian is nonsingular and yields a QUEA of \({\mathfrak g_0}\). For a certain class of symmetric decompositions, we prove, by refining cohomological arguments due to Drinfel’d, that every QUEA of \({\mathfrak g_0}\) so obtained is isomorphic to a cochain twist of the undeformed envelope \({\mathcal U(\mathfrak g_0)}\). To do so we introduce the \({\mathfrak p}\)-contractible Chevalley-Eilenberg complex and prove, for this class of symmetric decompositions, a version of Whitehead’s lemma for this complex. By virtue of the existence of the cochain twist, there exist triangular quasi-Hopf algebras based on these contracted QUEAs and, in the approach due to Beggs and Majid, the dual quantized coordinate algebras admit quasi-associative differential calculi of classical dimensions. As examples, we consider κ-Poincaré in 3 and 4 spacetime dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drinfeld, V.G.: Quantum groups. J. Sov. Math. 41, 898 (1988) [Zap. Nauchn. Semin. 155, 18 (1986)]. Also in Proc. Int. Cong. Math. (Berkeley,1986) 1, 1987, pp. 798–820

  2. Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  3. Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Drinfel’d, V.G.: Quasi-Hopf algebras. (Russian) Algebra i Analiz 1(6), 114–148 (1989); translation in Leningrad Math. J. 1(6), 1419–1457 (1990)

  5. Drinfel’d, V.G.: On the structure of quasitriangular quasi-Hopf algebras. (Russian) Funktsional. Anal. i Prilozhen. 26(1), 78–80 (1992); translation in Funct. Anal. Appl. 26(1), 63–65 (1992)

  6. Drinfel’d, V.G.: On almost cocommutative Hopf algebras. (Russian) Algebra i Analiz 1(2), 30–46 (1989); translation in Leningrad Math. J. 1(2), 321–342 (1990)

  7. Beggs E.J., Majid S.: Semi-classical differential structures. Pac. J. Math. 224(1), 1–44 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beggs, E.J., Majid, S.: Quantization by cochain twists and nonassociative differentials. http://arxiv.org/abs/math/0506450v2[math.QA], 2005

  9. Weinberg, S.: The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge: Cambridge University Press, 1995

  10. Lukierski J.: Quantum deformations of Einstein’s relativistic symmetries. AIP Conf. Proc. 861, 398 (2006)

    Article  ADS  Google Scholar 

  11. Oeckl R.: Untwisting noncommutative R**d and the equivalence of quantum field theories. Nucl. Phys. B 581, 559 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Lukierski J., Ruegg H., Zakrzewski W.J.: Classical quantum mechanics of free kappa relativistic systems. Annals Phys. 243, 90 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kosinski P., Lukierski J., Maslanka P.: Local D = 4 fieldtheory on kappa-deformed Minkowski space. Phys. Rev. D 62, 025004 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Amelino-Camelia G., Majid S.: Waves on noncommutative spacetime and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  15. Agostini A., Amelino-Camelia G., D’Andrea F.: Hopf-algebra description of noncommutative-spacetime symmetries. Int. J. Mod. Phys. A 19, 5187 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Dimitrijevic M., Jonke L., Moller L., Tsouchnika E., Wess J., Wohlgenannt M.: Field theory on kappa-spacetime. Czech. J. Phys. 54, 1243 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Grosse H., Wohlgenannt M.: On kappa-deformation and UV/IR mixing. Nucl. Phys. B 748, 473 (2006)

    Article  MATH  ADS  Google Scholar 

  18. Kresic-Juric S., Meljanac S., Stojic M.: Covariant realizations of kappa-deformed space. Eur. Phys. J. C 51, 229 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Daszkiewicz M., Lukierski J., Woronowicz M.: κ-deformed statistics and classical fourmomentum addition law. Mod. Phys. Lett. A23, 653–665 (2008)

    MathSciNet  ADS  Google Scholar 

  20. Majid S., Ruegg H.: Bicrossproduct structure of kappa poincare group and noncommutative geometry. Phys. Lett. B 334, 348 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Freidel L., Kowalski-Glikman J., Nowak S.: Field theory on κ–Minkowski space revisited: Noether charges and breaking of Lorentz symmetry. Int. J. Mod. Phys. A 23, 2687 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Celeghini E., Giachetti R., Sorace E., Tarlini M.: Three dimensional quantum groups from contraction of SU(2) Q . J. Math. Phys. 31, 2548 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Celeghini E., Giachetti R., Sorace E., Tarlini M.: The Three-dimensional Euclidean quantum group E(3)-q and its R matrix. J. Math. Phys. 32, 1159 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Lukierski J., Ruegg H., Nowicki A., Tolstoi V.N.: Q-deformation of Poincare algebra. Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  25. Dixmier J.: Enveloping Algebras. North Holland Publishing Company, Amsterdam (1977)

    Google Scholar 

  26. Helgason S.: Differential Geometry and Symmetric Spaces. Academic Press, London (1962)

    MATH  Google Scholar 

  27. Cartan E.: Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple. Ann. Sci. Ecole Norm. Sup. 44, 345–467 (1927)

    MathSciNet  Google Scholar 

  28. Helgason S.: Fundamental solutions of invariant differential operators on symmetric spaces. Amer. J. Math. 86(3), 565–601 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  29. Burstall F.E., Ferus D., Pedit F., Pinkall U.: Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. Math. 138(1), 173–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Evans J.M.: Integrable sigma-models and Drinfeld-Sokolovhierarchies. Nucl. Phys. B 608, 591 (2001)

    Article  MATH  ADS  Google Scholar 

  31. Hochschild G.: On the cohomology groups of an associative algebra. Ann. Math. 46(1), 58–67 (1945)

    Article  MathSciNet  Google Scholar 

  32. Hochschild G.: On the cohomology theory for associatviealgebras. Ann. Math. 47(3), 568–579 (1946)

    Article  MathSciNet  Google Scholar 

  33. Cartan H., Eilenberg S.: Homological Algebra. Princeton University Press, Princeton, NJ (1956)

    MATH  Google Scholar 

  34. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge studies in advanced mathematics 38, Cambridge: Cambridge University Press, 1994

  35. Chevalley C., Eilenberg S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948)

    MATH  MathSciNet  Google Scholar 

  36. Inönu E., Wigner E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. U.S.A 39, 510–524 (1953)

    Article  ADS  Google Scholar 

  37. Saletan E.J.: Contraction of Lie groups. J. Math. Phys. 2, 1–21 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  38. Donin J., Shnider S.: Cohomological construction of quantized universal enveloping algebras. Trans. Am. Math. Soc. 349, 1611 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lukierski J., Ruegg H.: Quantum kappa poincaré in any dimension. Phys. Lett. B 329, 189 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  40. Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D.: Twisted statistics in kappa-minkowski spacetime. Phys. Rev. D 77, 105010 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Borowiec A., Pachol A.: kappa-Minkowski spacetime as the result of Jordanian twist deformation. Phys. Rev. D 79, 045012 (2009)

    Article  ADS  Google Scholar 

  42. Young C.A.S., Zegers R.: On kappa-deformation and triangular quasibialgebra structure. Nucl. Phys. B 809, 439–457 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  43. Young C.A.S., Zegers R.: Covariant particle statistics and intertwiners of the kappa-deformed Poincare algebra. Nucl. Phys. B 797, 537 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Young C.A.S., Zegers R.: Covariant particle exchange for kappa-deformed theories in 1+1 dimensions. Nucl. Phys. B 804, 342 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Zakrzewski, S.: Poisson Poincaré groups. http://arxiv.org/abs/hep-th/9412099v1, 1994

  46. Schroers, B.J.: Lessons from (2 + 1)-dimensional quantum gravity. PoS QG-PH, 035 (2007)

  47. Majid, S., Schroers, B.J.: q-Deformation and semidualisation in 3d quantum gravity. http://arxiv.org/abs/0806.2587v2[gr-qc], 2009

  48. Procesi C.: The invariants of n × n matrices. Adv. Math. 19, 306–381 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kraft, H., Procesi, C.: Classical invariant theory. available online at http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf, 1996

  50. Spivak, M.: A comprehensive introduction to differential geometry. Vol. 5, Houston, TX: Publish or Perish, 1979

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zegers.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, C.A.S., Zegers, R. Deformation Quasi-Hopf Algebras of Non-semisimple Type from Cochain Twists. Commun. Math. Phys. 298, 585–611 (2010). https://doi.org/10.1007/s00220-010-1086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1086-8

Keywords

Navigation