Skip to main content
Log in

3D Stochastic Primitive Equations of the Large-Scale Ocean: Global Well-Posedness and Attractors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the global well-posedness and long-time dynamics for the three-dimensional viscous primitive equations describing the large-scale oceanic motion under a random forcing, which is an additive white in time noise. We firstly prove the existence and uniqueness of global strong solutions to the initial boundary value problem for the stochastic primitive equations. Subsequently, by studying the asymptotic behavior of strong solutions, we obtain the existence of random attractors for the corresponding random dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Space. Academic Press, New York (1975)

    Google Scholar 

  2. Arnold, L.: Random Dynamical System, Springer Monograghs in Mathematics, Berlin: Springer-Verlag 1998

  3. Bourgeois A.J., Beale J.T.: Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25, 1023–1068 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations (in Russian), Moscow: Nauka 1989 English translation: Amsterdam: North Holland, 1992

  5. Cordoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crauel H., Debussche A., Flandoli F.: Random attractors. J. Dyn. Diff. Eq. 29(2), 307–341 (1997)

    Article  MathSciNet  Google Scholar 

  7. Crauel H., Flandoli F.: Attractors of random dynamics systems. Prob. Th. Rel. Fields 100, 365–393 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Charney J.G., Fjortaft R., Von Neumann J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)

    MathSciNet  Google Scholar 

  9. Constantin, P., Foias, C., Temam, R.: Attractors representing turbolent flows. Memoirs of AMS, Vol. 53, No. 314, 1985

  10. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Constantin P., Majda A., Tabak E.: Singular front formation in a model for quasigeostrophic flow. Phys. Fluids 6, 9–11 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Charney J.G., Philips N.A.: Numerical integration of the quasi-geostrophic equations for barotropic simple baroclinic flows. J. Meteor. 10, 71–99 (1953)

    Google Scholar 

  13. Cao C., Titi E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics. Ann. of Math. 166, 245–267 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duan J., Gao H., Schmalfuss B.: Stochastic dynamics of a coupled atmosphere-ocean model. Stoch. and Dynam. 2(3), 357–380 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duan J., Kloeden P.E., Schmalfuss B.: Exponential stability of the quasi-geostrophic equation under random perturbations. Prog. in Probability 49, 241–256 (2001)

    MathSciNet  Google Scholar 

  17. Duan J., Schmalfuss B.: The 3D quasi-geostrophic fluid dynamics under random forcing on boundary. Comm. in Math. Sci. 1, 133–151 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Embid P.F., Majda A.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Comm. in PDE 21, 619–658 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Flandoli F.: Dissipativity and invariant measures for stochastic Navier-Stokes equations. Nonliear Diff. Eq. Appl. 1, 403–423 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Frankignoul C., Hasselmann K.: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977)

    Article  ADS  Google Scholar 

  21. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Berlin-Heidelberg-New York: Springer-Verlag, 1994

  22. Guillén-González F., Masmoudi N., Rodríguez-Bellido M.A.: Anisotropic estimates and strong solutions for the primitive equations. Diff. Int. Equ. 14, 1381–1408 (2001)

    MATH  Google Scholar 

  23. Hu C., Temam R., Ziane M.: The primimitive equations of the large scale ocean under the small depth hypothesis. Disc. and Cont. Dyn. Sys. 9(1), 97–131 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Lions J.L., Temam R., Wang S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Lions J.L., Temam R., Wang S.: On the equations of the large scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Lions J.L., Temam R., Wang S.: Models of the coupled atmosphere and ocean(CAO I). Computational Mechanics Advance 1, 1–54 (1993)

    MathSciNet  Google Scholar 

  27. Lions J.L., Temam R., Wang S.: Mathematical theory for the coupled atmosphere-ocean models (CAO III). J. Math. Pures Appl. 74, 105–163 (1995)

    MATH  MathSciNet  Google Scholar 

  28. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics 9 (2003)

  30. Majda A., Eijnden E.V.: A mathematical framework for stochastic climate models. Comm. Pure Appl. Math 54, 891–974 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Majda A., Wang X.: The emergence of large-scale coherent structure under small-scale random bombardments. Comm. Pure Appl. Math 59, 467–500 (2001)

    Article  MathSciNet  Google Scholar 

  32. Müller, P.: Stochastic forcing of quasi-geostrophic eddies. Stochastic Modelling in Physical Oceanography, edited by R. J. Adler, P. Müller, B. Rozovskii, Basel: Birkhäuser, 1996

  33. Mikolajewicz U., Maier-Reimer E.: Internal secular variability in an OGCM. Climate Dyn. 4, 145–156 (1990)

    Article  ADS  Google Scholar 

  34. Pedlosky J.: Geophysical Fluid Dynamics. 2nd Edition. Springer-Verlag, Berlin/New York (1987)

    MATH  Google Scholar 

  35. Phillips O.M.: On the generation of waves by turbulent winds. J. Fluid Mech. 2, 417–445 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Da Prato G., Zabczyk J.: Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Application. Cambridge Univ. Press, Cambridge (1992)

    Google Scholar 

  37. Da Prato G., Zabczyk J.: Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  38. Rubenstein D.: A spectral model of wind-forced internal waves. J. Phys. Oceanogr. 24, 819–831 (1994)

    Article  ADS  Google Scholar 

  39. Schmalfuss, B.: Backward cocycle and attractors of stochastic differential equations, In: International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, edited by V. Reitmann, T. Riedrich, N. Kokch, Dresden: Universität 1992, pp. 185–192

  40. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd Edition, Appl. Math. Ser., Vol. 68, New York: Springer-Verlag, 1997

  41. Temam R.: Navier-Stokes Equations: Theory and Numerical Analysis, Revised Edition. North-Holland, Amsterdam (1984)

    Google Scholar 

  42. Samelson R., Temam R., Wang S.: Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl. Anal. 70(1–2), 147–173 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. Handbook of Mathematical Fluid Dynamics, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiwen Huang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Huang, D. 3D Stochastic Primitive Equations of the Large-Scale Ocean: Global Well-Posedness and Attractors. Commun. Math. Phys. 286, 697–723 (2009). https://doi.org/10.1007/s00220-008-0654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0654-7

Keywords

Navigation