Skip to main content
Log in

(Co)cyclic (Co)homology of Bialgebroids: An Approach via (Co)monads

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a (co)monad T l on a category \({\mathcal{M}}\), an object X in \({\mathcal{M}}\) , and a functor \({{\varvec {\Pi}}:\mathcal{M} \to \mathcal{C}}\) , there is a (co)simplex \({Z^\ast:={\varvec {\Pi} {T_l}}^{\ast +1} X}\) in \({\mathcal{C}}\) . The aim of this paper is to find criteria for para-(co)cyclicity of Z *. Our construction is built on a distributive law of T l with a second (co)monad T r on \({\mathcal{M}}\) , a natural transformation \({i:{\varvec {\Pi} {T_l} \to {\bf \Pi} {T_r}}}\) , and a morphism \({w:{\varvec {T_r}}X \to {\varvec {T_l}}X}\) in \({\mathcal{M}}\) . The (symmetrical) relations i and w need to satisfy are categorical versions of Kaygun’s axioms of a transposition map. Motivation comes from the observation that a (co)ring T over an algebra R determines a distributive law of two (co)monads \({{\varvec {T_l}}=T \otimes_R (-)}\) and \({{\varvec {T_r}}=(-)\otimes_R T}\) on the category of R-bimodules. The functor Π can be chosen such that \({Z^n=T\widehat{\otimes}_R\cdots \widehat{\otimes}_R T \widehat{\otimes}_RX}\) is the cyclic R-module tensor product. A natural transformation \({{i}:T \widehat{\otimes}_R (-) \to (-) \widehat{\otimes}_R T}\) is given by the flip map and a morphism \({w: X \otimes_R T \to T\otimes_R X}\) is constructed whenever T is a (co)module algebra or coring of an R-bialgebroid. The notion of a stable anti-Yetter-Drinfel’d module over certain bialgebroids, the so-called  ×  R -Hopf algebras, is introduced. In the particular example when T is a module coring of a  ×  R -Hopf algebra \({\mathcal{B}}\) and X is a stable anti-Yetter-Drinfel’d \({\mathcal{B}}\) -module, the para-cyclic object Z * is shown to project to a cyclic structure on \({T^{\otimes_R\, \ast+1} \otimes_{\mathcal{B}} X}\) . For a \({\mathcal{B}}\) -Galois extension \({S \subseteq T}\) , a stable anti-Yetter-Drinfel’d \({\mathcal{B}}\) -module T S is constructed, such that the cyclic objects \({\mathcal{B}^{\otimes_R\, \ast+1} \otimes_{\mathcal{B}} T_S}\) and \({T^{\widehat{\otimes}_S\, \ast+1}}\) are isomorphic. This extends a theorem by Jara and Ştefan for Hopf Galois extensions. As an application, we compute Hochschild and cyclic homologies of a groupoid with coefficients in a stable anti-Yetter-Drinfel’d module, by tracing it back to the group case. In particular, we obtain explicit expressions for (coinciding relative and ordinary) Hochschild and cyclic homologies of a groupoid. The latter extends results of Burghelea on cyclic homology of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akrami S.E., Majid S.: Braided cyclic cocycles and non-associative geometry. J. Math. Phys. 45, 3883–3911 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Beck J.: Distributive laws, Lecture Notes in Mathematics 80. Berlin-Heidelberg-New York: Springer Verlag (1969), pp. 119–140

    Google Scholar 

  3. Böhm G., Brzeziński T.: Strong connections and the relative Chern-Galois character for corings. Int. Math. Res. Not. 42, 2579–2625 (2005)

    Article  Google Scholar 

  4. Brzeziński T., Caenepeel S., Militaru G.: Doi-Koppinen modules for quantum groupoids. J. Pure Appl. Algebra 175, 45–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzeziński T., Majid S.: Coalgebra bundles. Commun. Math. Phys. 191, 467–492 (1998)

    Article  ADS  MATH  Google Scholar 

  6. Brzeziński T., Militaru G.: Bialgebroids,  ×  a -bialgebras and duality. J. Algebra 251, 279–294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burghelea D.: The cyclic homology of the group rings. Comment. Math. Helv. 60, 354–365 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burroni, E.: Algébres non déterministiques et D-catégories. Cahiers de Topologie et Géometrie Différentielle 14, 417–475, 480–481 (1973)

  9. Caenepeel S., De Groot E.: Galois theory for weak Hopf algebras. Rev. Roumaine Math. Pures Appl. 52, 51–76 (2007)

    MathSciNet  Google Scholar 

  10. Connes A., Moscovici H.: Local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connes A., Moscovici H.: Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198, 199–246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Connes, A., Moscovici, H.: Differential cyclic cohomology and Hopf algebraic structures in transverse geometry. In: Essays on geometry and related topics. Vol. 1-2, Monogr. Enseign. Math. 38, Geneva: Enseignement Math., 2001, pp. 217–255

  13. Crainic M.: Cyclic cohomology of étale groupoids: the general case. K-Theory 17, 319–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eilenberg S., Moore J.C.: Adjoint functors and triples. Ill. J. Math. 9, 381–398 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Godement R.: Théorie des faisceaux. Hermann, Paris (1957)

    Google Scholar 

  16. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y.: Stable anti-Yetter-Drinfeld modules. C. R. Math. Acad. Sci. Paris 338, 587–590 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y.: Hopf-cyclic homology and cohomology with coefficients. C. R. Math. Acad. Sci. Paris 338, 667–672 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Hobst, D.: Antipodes in the theory of noncommutative torsors. PhD thesis, Ludwig-Maximilians Universität München, 2004, Berlin: Logos Verlag, 2004

  19. Jara P., Ştefan D.: Hopf-cyclic homology and relative cyclic homology of Hopf-Galois extensions. Proc. London Math. Soc. (3) 93, 138–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kadison, L.: Cyclic homology of triangular matrix algebras, In: Topology Hawaii (Honolulu, HI, 1990), Singapore: World Sci., 1992

  21. Kadison L., Szlachányi K.: Bialgebroid actions on depth two extensions and duality. Adv. Math. 179, 75–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kasangian S., Lack S., Vitale E.: Coalgebras, braidings, and distributive laws. Theory and Applications of Categories 13, 129–146 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Kassel C.: Quantum groups, Graduate Text in Mathematics 155. Springer, Berlin-Heidelberg-New York (1995)

    Google Scholar 

  24. Kaygun A.: Bialgebra cyclic homology with coefficients. K-Theory 34, 151–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaygun, A.: The universal Hopf cyclic theory. To appear in J. Noncommut. Geom., available at http://arxiv.org/list/math/0609311

  26. Khalkhali M., Rangipour B.: Invariant cyclic homology. K-Theory 28, 183–205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalkhali M., Rangipour B.: Para-Hopf algebroids and their cyclic cohomology. Lett. Math. Phys. 70, 259–272 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Khalkhali M., Rangipour B.: A note on cyclic duality and Hopf algebras. Comm. Algebra 33, 763–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lopez J., Panaite F., van Oystaeyen F.: General twisting of algebras. Adv. Mathematics 212, 315–337 (2007)

    Article  MATH  Google Scholar 

  30. Loday J.-L.: Cyclic Homology. Springer-Verlag, Berlin-Heidelberg-New York (1992)

    MATH  Google Scholar 

  31. Lu J.H.: Hopf algebroids and quantum groupoids. Int. J. Math. 7, 47–70 (1996)

    Article  MATH  Google Scholar 

  32. Mac Lane S.: Categories for the working mathematician. Springer-Verlag, Berlin-Heidelberg-New York (1974)

    Google Scholar 

  33. Majid S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  34. Rangipour, B.: Cyclic cohomology of corings. http://arxiv.org/list/math/0607248, 2006

  35. Schauenburg P.: Bialgebras over noncommutative rings and a structure theorem for Hopf bimodules. Appl. Categorical Str. 6, 193–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schauenburg, P.: Duals and doubles of quantum groupoids ( ×  R -Hopf algebras). In: Andruskiewitsch, N., Ferrer-Santos, W.R., Schneider, H.-J. (eds.), AMS Contemp. Math. 267, RI: Amer. Math. Soc., Providence 2000, pp. 273–293

  37. Škoda, Z.: Cyclic structures for simplicial objects from comonads. http://arxiv.org/list/math/0412001, 2004

  38. Takeuchi M.: Groups of algebras over \({A\otimes {\overline A}}\) . J. Math. Soc. Japan 90, 459–492 (1977)

    Article  Google Scholar 

  39. Vecsernyés P.: Larson-Sweedler theorem and the role of grouplike elements in weak Hopf algebras. J. Algebra 270, 471–520 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weibel, C.: An introduction to homological algebra.Cambridge Studies in Advanced Mathematics 38. Cambridge: Cambridge, University Press, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Böhm.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, G., Ştefan, D. (Co)cyclic (Co)homology of Bialgebroids: An Approach via (Co)monads. Commun. Math. Phys. 282, 239–286 (2008). https://doi.org/10.1007/s00220-008-0540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0540-3

Keywords

Navigation