Abstract
The moduli spaces of hyperbolic monopoles are naturally fibred by the monopole mass, and this leads to a nontrivial mass dependence of the holomorphic data (spectral curves, rational maps, holomorphic spheres) associated to hyperbolic multi-monopoles. In this paper, we obtain an explicit description of this dependence for general hyperbolic monopoles of magnetic charge two. In addition, we show how to compute the monopole mass of higher charge spectral curves with tetrahedral and octahedral symmetries. Spectral curves of euclidean monopoles are recovered from our results via an infinite-mass limit.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adler M., van Moerbeke P. (1980) Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math. 38: 318–379
Arbarello E., Cornalba M., Griffiths P., Harris J. (1985) Geometry of Algebraic Curves. Volume I. Grundlehren der Mathematischen Wissenschaften 267. Springer-Verlag, Berlin Heidelberg New York
Atiyah, M.F.: Magnetic monopoles in hyperbolic spaces. In: Vector Bundles in Algebraic Geometry (Bombay Colloquium 1984), Tata Institute, Oxford: Oxford University Press, 1987, pp. 1–33
Atiyah M.F. (1991) Magnetic monopoles and the Yang–Baxter equations. Int. J. Mod. Phys. A 6: 2761–2774
Atiyah M.F., Hitchin N.J. 1988. The Geometry and Dynamics of Magnetic Monopoles. Princeton University Press, Princeton, NJ
Atiyah M.F., Murray M.K. (1995) Monopoles and Yang–Baxter equations. In: Mason L.J., Hughston L.P., Kobak P.Z. (eds) Further Advances in Twistor Theory, Vol. II. Longman, Essex, pp. 13–14
Byrd P.F., Friedman M.D. 1954. Handbook of Elliptic Integrals for Engineers and Physicists. Springer-Verlag, Berlin- Heidelberg-New York
Ercolani E., Sinha A. (1989) Monopoles and Baker functions. Commun. Math. Phys. 125: 385–416
Fricke R. (1913) Elliptische Funktionen. In: Burkhardt H., Wirtinger W., Fricke R., Hilb E. (eds) Encyklopädie der mathematischen Wissenschaften II 2. Leipzig, Teubner, pp. 177–348
Griffiths P. (1985) Linearizing flows and a cohomological interpretation of Lax equations. Amer. J. Math. 107: 1445–1484
Griffiths P., Harris J. (1978). Principles of Algebraic Geometry. Wiley, New York
Hitchin N.J. (1982) Monopoles and geodesics. Commun. Math. Phys. 83: 579–602
Hitchin, N.J.: Magnetic monopoles with Platonic symmetry. In: Moduli of Vector Bundles (Sanda and Kyoto, 1994), ed. Maruyama, M.. Lecture Notes in Pure and Applied Mathematics 179, Berlin- Heidelberg-New York: Springer-Verlag, 1996, pp. 55–63
Hitchin N.J., Manton N.S., Murray M.K. (1995) Symmetric monopoles. Nonlinearity 8: 661–692
Houghton C.J., Manton N.S., Romão N.M. (2000) On the constraints defining BPS monopoles. Commun. Math. Phys. 212: 219–243
Houghton C.J., Sutcliffe P.M. (1996) Tetrahedral and cubic monopoles. Commun. Math. Phys. 180: 343–361
Hurtubise J. (1983) SU(2) monopoles of charge 2. Commun. Math. Phys. 92: 195–202
Jarvis S., Norbury P. (1997) Zero and infinite curvature limits of hyperbolic monopoles. Bull. London Math. Soc. 29: 737–744
Kiepert L. (1872) Wirkliche Ausführung der ganzzahligen Multiplication der elliptischen Functionen. J. reine angew. Math. 76: 21–33
Klein F. (1884) Vorlesungen über das Ikosaeder und die Auflösung der Gleichung vom fünften Grade. Teubner, Leipzig
Maldacena J. (1998). The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2: 231–252
Manton N.S. (1982) A remark on the scattering of BPS monopoles. Phys. Lett. B 110: 54–56
Manton N.S., Sutcliffe P.M. (2004) Topological Solitons. Cambridge University Press, Cambridge
Murray M.K., Norbury P., Singer M.A. (2003) Hyperbolic monopoles and holomorphic spheres. Ann. Global Anal. Geom. 23: 101–128
Murray M., Singer M. (1996) Spectral curves of non-integral hyperbolic monopoles. Nonlinearity 9: 973–997
Norbury P. (2004) Boundary algebras of hyperbolic monopoles. J. Geom. Phys. 51: 13–33
Segal G.B., Selby A. (1996) The cohomology of the space of magnetic monopoles. Commun. Math. Phys.177: 775–787
Sen A. (1994) Dyon-monopole bound states, self-dual harmonic forms on the multi-monopole moduli space, and SL(2, Z)-invariance of string theory. Phys. Lett. B 329: 217–221
Sutcliffe P.M. (1996) Monopole zeros. Phys. Lett. B 376: 103–110
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G.W. Gibbons.
Rights and permissions
About this article
Cite this article
Norbury, P., Romão, N.M. Spectral Curves and the Mass of Hyperbolic Monopoles. Commun. Math. Phys. 270, 295–333 (2007). https://doi.org/10.1007/s00220-006-0148-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-0148-4