Skip to main content
Log in

Painlevé VI, Rigid Tops and Reflection Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Painlevé VI equation has an equivalent form of the non-autonomous Zhukovsky-Volterra gyrostat. This system is a generalization of the Euler top in \(\mathbb{C}^3\) and includes the additional constant gyrostat momentum. The quantization of its autonomous version is achieved by the reflection equation. The corresponding quadratic algebra generalizes the Sklyanin algebra. As by product we define integrable XYZ spin chain on a finite lattice with new boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arinkin, D., Lysenko, S.: Isomorphisms between moduli spaces of SL(2)-bundles with connections on \(\mathbb {P}^1/{x_1,\ldots,x_4}\). Math. Res. Lett. 4, 181–190 (1997); On the moduli spaces of SL(2)-bundles with connections on \(\mathbb {P}^1/{x_1,\ldots,x_4}\). Internat. Math. Res. Notices, 19, 983–999 (1997)

    Google Scholar 

  2. Atiyah M. (1957): Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207

    Article  MATH  MathSciNet  Google Scholar 

  3. Baxter R.J. (1973): Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain, I. Ann. Phys. 76, 48–71

    Article  ADS  Google Scholar 

  4. Belavin A., Drinfeld V. (1982): Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. 16(3): 1–29

    MATH  MathSciNet  Google Scholar 

  5. Borisov, A.V., Mamaev, I.S.: Modern Methods of the Theory of Integrable Systems. Moscow - Izhevsk: Institute of Computer Science, 2003

  6. Calogero F. (1975): Exactly solvable one dimensional many-body problem. Lett. Nuovo 13, 411–416

    MathSciNet  Google Scholar 

  7. Date E., Jimbo M., Miwa T., Okado M. (1986): Fusion of The Eight Vertex Sos Model. Lett. Math. Phys. 12, 209

    Article  MathSciNet  Google Scholar 

  8. Faddeev L., Takhtajan L. (1987): Hamiltonian approach to solitons theory. Springer Series in Soviet Mathematics. Berlin, Springer-Verlag

    Google Scholar 

  9. Feigin B., Odesski A. (1989): Sklyanin’s elliptic algebras. Funct. Anal. Appl. 23(3): 207–214

    MATH  MathSciNet  Google Scholar 

  10. Fedorov Yu.N. (1993): Lax Representation with Spectral Parameter on the Coverings of Hyperelliptic Curves. Math. Notes 54, 94–109

    Article  MATH  MathSciNet  Google Scholar 

  11. Gambier B. (1910): Sur les équations differentielles du second ordre et du premier degré dont l’integral générale a ses points critiques fixes. Acta Math. Ann. 33, 1–55

    Article  MathSciNet  Google Scholar 

  12. Gibbons J., Hermsen T. (1910): A generalization of Calogero-Moser system. Physica D 11D, 337–348

    MathSciNet  ADS  Google Scholar 

  13. Hasegawa K. (1997): Ruijsenaars’ commuting difference operators as commuting transfer matrices. Commun. Math. Phys. 187, 289–325

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Hitchin N. (1987): Stable bundles and Integrable Systems. Duke Math. J. 54, 91–114

    Article  MATH  MathSciNet  Google Scholar 

  15. Inozemtsev V. (1989): Lax Representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys. 17, 11–17

    Article  MATH  MathSciNet  Google Scholar 

  16. Inami T., Konno H. (1994): Integrable XYZ spin chain with boundaries. J. Phys. A: Math. Gen. 27, L913–L918

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Iwasaki K. (1992): Fuchsian moduli on a Riemann surface - its Poisson structure and Poincaré-Lefschetz duality. Pacific J. Math. 155, 319–340

    MATH  MathSciNet  Google Scholar 

  18. Korotkin D., Samtleben J.A.H. (1997): On the quantization of isomonodromic deformations on the torus. Int. J. Mod. Phys. A12, 2013–2030

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Khesin B., Levin A., Olshanetsky M. (2004): Bihamiltonian structures and quadratic algebras in Hydrodynamics and on non-commutative torus. Commun. Math. Phys. 270, 581–612

    MathSciNet  ADS  Google Scholar 

  20. Krichever I.M. (1980): Elliptic solutions of Kadomtsev-Petviasvili equation and integrable system of particles. Funct. Anal. Appl. 14, 282–290

    Article  Google Scholar 

  21. Kuznetsov V.B., Jorgensen M.F., Christiansen P.L. (1995): New boundary conditions for integrable lattices. J. Phys. A 28, 4639–4654

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Levin, A., Olshanetsky, M.: Hierarchies of isomonodromic deformations and Hitchin systems. Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191. Providence, RI: Amer. Math. Soc., 1999, pp. 223–262

  23. Levin, A., Olshanetsky, M.: Non-autonomous Hamiltonian systems related to higher Hitchin integrals, (Russian) Teoret. Mat. Fiz. 123(2), 237–263 (2000); translation in Theoret. and Math. Phys. 123, 609–632 (2000)

  24. Levin A., Olshanetsky M., Zotov A. (2003): Hitchin systems– symplectic Hecke correspondence and two-dimensional version. Commun. Math. Phys. 236, 93–133

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Manin Yu.I. (1998): Sixth Painlevé equation, universal elliptic curve, and mirror of P 2. Amer. Math. Soc. Transl. 186(2): 131–151

    MATH  MathSciNet  Google Scholar 

  26. Moser J. (1975): Three integrable Hamiltonian systems connected with isospectral deformations. Adv. in Math. 16, 197–220

    Article  MATH  Google Scholar 

  27. Mumford, D.: Tata Lectures on Theta I, II. Boston: Birkhäuser, 1983, 1984

  28. Nekrasov N. (1996): Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587–604

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Oblezin S. (2005): Isomonodromic deformations and the Hecke correspondence. Moscow Math. J. 5, 415–441

    MATH  MathSciNet  Google Scholar 

  30. Olshanetsky M. (2003): The large N limits of integrable models. Mosc. Math. J. 3, 1307–1331

    MATH  MathSciNet  Google Scholar 

  31. Painlevé P. (1906): Sur les équations différentielles du second odre à points critics fixes. CRAS 143, 1111–1117

    Google Scholar 

  32. Reyman, A., Semenov-Tian-Schansky, M.: Lie algebras and Lax equations with spectral parameter on elliptic curve. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 150 (1986), Voprosy Kvant. Teor. Polya i Statist. Fiz. 6, 104–118, 221; translation in J. Soviet Math. 46(1), 1631–1640 (1989)

  33. Simpson S.T. (1990): Harmonic bundles on non-compact curves. J. AMS 3, 713–770

    MATH  MathSciNet  Google Scholar 

  34. Sklyanin E. (1987): Boundary conditions for integrable equations. Func. Anal. Appl. 21, 86–87

    Article  MATH  MathSciNet  Google Scholar 

  35. Sklyanin E. (1982): Some algebraic structures connected with the Yang-Baxter equation. Funct. Anal. Appl. 16(4): 27–34

    MATH  MathSciNet  Google Scholar 

  36. Sklyanin E. (1988): Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21, 2375–2389

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Sklyanin E., Takebe T. (1996): Algebraic Bethe ansatz for the XYZ Gaudin model. Phys. Lett. A 219, 217–225

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Sklyanin E., Takebe T. (1999): Separation of Variables in the Elliptic Gaudin Model. Commun. Math. Phys. 204(1): 17–38

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Takasaki K. (1998): Gaudin Model, KZ Equation, and Isomonodromic Deformation on Torus. Lett. Math. Phys. 44, 143–156

    Article  MATH  MathSciNet  Google Scholar 

  40. Takasaki K. (1998): Spectral Curves and Whitham Equations in the Isomonodromic Problems of Schlesinger Type. Asian J. Math. 2(4): 1049–1078

    MATH  MathSciNet  Google Scholar 

  41. Vakulenko, V.: Note on the Ruijsenaars-Schneider model. http://arxiv.org/list/math.QA/9909079, 1999

  42. Volterra V. (1899): Sur la théorie des variations des latitudes. Acta Math. 22, 201–357

    Article  Google Scholar 

  43. Wojciechowski S. (1985): An integrable marriage of the Euler equations with the Calogero-Moser system. Phys. Lett. A111: 101

    Article  MathSciNet  ADS  Google Scholar 

  44. Workshop on Painlevé Transcedents, Their asymptotics and Physical Applications, NATO ASI Ser. B: Physics, Vol. 278, (Sainte Adele, Quebec, 1990), D. Levi, P. Winternitz, eds., New York: Plenum, 1992

  45. Zhukovsky, N.E.: J. Phys. Chem. Soc. 17, 81–113, 145–199, 231–280 (1885)

    Google Scholar 

  46. Zotov A. (2004): Elliptic Linear Problem for Calogero-Inozemtsev Model and Painlevé VI Equation. Lett. Math. Phys. 67, 153–165

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Olshanetsky.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, A.M., Olshanetsky, M.A. & Zotov, A.V. Painlevé VI, Rigid Tops and Reflection Equation. Commun. Math. Phys. 268, 67–103 (2006). https://doi.org/10.1007/s00220-006-0089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0089-y

Keywords

Navigation