Abstract
In this paper we investigate an abstract Klein–Gordon equation by means of indefinite inner product methods. We show that, under certain assumptions on the potential which are more general than in previous works, the corresponding linear operator A is self-adjoint in the Pontryagin space \(\mathcal{K}\) induced by the so-called energy inner product. The operator A possesses a spectral function with critical points, the essential spectrum of A is real with a gap around 0, and the non-real spectrum consists of at most finitely many pairs of complex conjugate eigenvalues of finite algebraic multiplicity; the number of these pairs is related to the ‘size’ of the potential. Moreover, A generates a group of bounded unitary operators in the Pontryagin space \(\mathcal{K}\). Finally, the conditions on the potential required in the paper are illustrated for the Klein–Gordon equation in \(\mathbb{R}^n\); they include potentials consisting of a Coulomb part and an L p -part with n ≤ p < ∞.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with an indefinite metric. In: Pure and Applied Mathematics (New York). Chichester: John Wiley & Sons Ltd., 1989; Translated from the Russian by E. R. Dawson, A Wiley-Interscience Publication
Bachelot A. (2004). Superradiance and scattering of the charged Klein–Gordon field by a step-like electrostatic potential. J. Math. Pures Appl. (9) 83(10):1179–1239
Brézis H., Kato T. (1979). Remarks on the Schrödinger operator with singular complex potentials. J.Math. Pures Appl. (9) 58(2):137–151
Bognár J. (1974). Indefinite inner product spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York
Eckardt K.-J. (1976). On the existence of wave operators for the Klein–Gordon equation. Manuscripta Math. 18(1):43–55
Eckardt K.-J. (1980). Scattering theory for the Klein–Gordon equation. Funct. Approx. Comment. Math. 8:13–42
Edmunds D.E., Evans W.D. (1987). Spectral theory and differential operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York
Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators. Vol. I, Volume 49 of Oper. Theory Adv. Appl., Basel: Birkhäuser Verlag, 1990
Hardy G.H., Littlewood J.E., Pólya G. (1988). Inequalities. Cambridge Mathematical Library. (Reprint of the 1952 edition). Cambridge: Cambridge University Press
Hardt, V., Mennicken, R.: On the spectrum of unbounded off-diagonal 2×2 operator matrices in Banach spaces. In: Recent advances in operator theory (Groningen, 1998), Volume 124 of Oper. Theory Adv. Appl., Basel: Birkhäuser, 2001, pp. 243–266
Jonas, P.: On local wave operators for definitizable operators in Krein space and on a paper by T. Kako. Preprint P-46/79 Zentralinstitut für Mathematik und Mechanik der AdW DDR, Berlin, 1979
Kako T. (1976). Spectral and scattering theory for the J-selfadjoint operators associated with the perturbed Klein–Gordon type equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(1):199–221
Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. New York: Springer-Verlag, 1966
Kato T. (1982). A short introduction to perturbation theory for linear operators. Springer-Verlag, New York
Krein M.G., Langer G.K. (1963). On the spectral function of a self-adjoint operator in a space with indefinite metric. Dokl. Akad. Nauk SSSR 152:39–42
Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Functional analysis (Dubrovnik, 1981), Volume 948 of Lecture Notes in Math., Berlin: Springer-Verlag, 1982, pp. 1–46.
Langer, H., Najman, B.: A Krein space approach to the Klein–Gordon equation. Unpublished manuscript, 1996
Langer, H., Najman, B., Tretter, C.: Spectral theory of the Klein–Gordon equation in Krein spaces. Submitted, 2006
Lundberg L.-E. (1973). Relativistic quantum theory for charged spinless particles in external vector fields. Commun. Math. Phys. 31:295–316
Lundberg L.-E. (1973). Spectral and scattering theory for the Klein–Gordon equation. Comm. Math. Phys. 31:243–257
Naimark M.A. (1966). Analog of Stone’s theorem for a space with an indefinite metric. Dokl. Akad. Nauk SSSR 170:1259–1261
Najman B. (1979). Solution of a differential equation in a scale of spaces. Glas. Mat. Ser. III 14(34)(1):119–127
Najman B. (1980). Spectral properties of the operators of Klein–Gordon type. Glas. Mat. Ser. III, 15(35)(1):97–112
Najman B. (1980). Localization of the critical points of Klein–Gordon type operators. Math. Nachr. 99:33–42
Najman B. (1983). Eigenvalues of the Klein–Gordon equation. Proc. Edinburgh Math. Soc. (2) 26(2):181–190
Reed M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975
Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978
Schechter M. (1976). The Klein–Gordon equation and scattering theory. Ann. Phys. 101(2):601–609
Simon B. (1971). Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton University Press, Princeton NJ
Schiff L., Snyder H., Weinberg J. (1940). On the existence of stationary states of the mesotron field. Phys. Rev. 57:315–318
Triebel H. (1992). Theory of function spaces. II, Volume 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel
Veselić K. (1983). On the nonrelativistic limit of the bound states of the Klein–Gordon equation. J. Math. Anal. Appl. 96(1):63–84
Weder R. (1977). Selfadjointness and invariance of the essential spectrum for the Klein–Gordon equation. Helv. Phys. Acta 50(1):105–115
Weder R.A. (1978). Scattering theory for the Klein–Gordon equation. J. Funct. Anal. 27(1):100–117
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by B. Simon
Branko Najman: Deceased
Rights and permissions
About this article
Cite this article
Langer, H., Najman, B. & Tretter, C. Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces. Commun. Math. Phys. 267, 159–180 (2006). https://doi.org/10.1007/s00220-006-0022-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-0022-4