Skip to main content
Log in

Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate an abstract Klein–Gordon equation by means of indefinite inner product methods. We show that, under certain assumptions on the potential which are more general than in previous works, the corresponding linear operator A is self-adjoint in the Pontryagin space \(\mathcal{K}\) induced by the so-called energy inner product. The operator A possesses a spectral function with critical points, the essential spectrum of A is real with a gap around 0, and the non-real spectrum consists of at most finitely many pairs of complex conjugate eigenvalues of finite algebraic multiplicity; the number of these pairs is related to the ‘size’ of the potential. Moreover, A generates a group of bounded unitary operators in the Pontryagin space \(\mathcal{K}\). Finally, the conditions on the potential required in the paper are illustrated for the Klein–Gordon equation in \(\mathbb{R}^n\); they include potentials consisting of a Coulomb part and an L p -part with np < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with an indefinite metric. In: Pure and Applied Mathematics (New York). Chichester: John Wiley & Sons Ltd., 1989; Translated from the Russian by E. R. Dawson, A Wiley-Interscience Publication

  2. Bachelot A. (2004). Superradiance and scattering of the charged Klein–Gordon field by a step-like electrostatic potential. J. Math. Pures Appl. (9) 83(10):1179–1239

    MathSciNet  MATH  Google Scholar 

  3. Brézis H., Kato T. (1979). Remarks on the Schrödinger operator with singular complex potentials. J.Math. Pures Appl. (9) 58(2):137–151

    MathSciNet  MATH  Google Scholar 

  4. Bognár J. (1974). Indefinite inner product spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York

    MATH  Google Scholar 

  5. Eckardt K.-J. (1976). On the existence of wave operators for the Klein–Gordon equation. Manuscripta Math. 18(1):43–55

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckardt K.-J. (1980). Scattering theory for the Klein–Gordon equation. Funct. Approx. Comment. Math. 8:13–42

    MathSciNet  MATH  Google Scholar 

  7. Edmunds D.E., Evans W.D. (1987). Spectral theory and differential operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York

    MATH  Google Scholar 

  8. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators. Vol. I, Volume 49 of Oper. Theory Adv. Appl., Basel: Birkhäuser Verlag, 1990

  9. Hardy G.H., Littlewood J.E., Pólya G. (1988). Inequalities. Cambridge Mathematical Library. (Reprint of the 1952 edition). Cambridge: Cambridge University Press

  10. Hardt, V., Mennicken, R.: On the spectrum of unbounded off-diagonal 2×2 operator matrices in Banach spaces. In: Recent advances in operator theory (Groningen, 1998), Volume 124 of Oper. Theory Adv. Appl., Basel: Birkhäuser, 2001, pp. 243–266

  11. Jonas, P.: On local wave operators for definitizable operators in Krein space and on a paper by T. Kako. Preprint P-46/79 Zentralinstitut für Mathematik und Mechanik der AdW DDR, Berlin, 1979

  12. Kako T. (1976). Spectral and scattering theory for the J-selfadjoint operators associated with the perturbed Klein–Gordon type equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(1):199–221

    MathSciNet  MATH  Google Scholar 

  13. Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. New York: Springer-Verlag, 1966

  14. Kato T. (1982). A short introduction to perturbation theory for linear operators. Springer-Verlag, New York

    MATH  Google Scholar 

  15. Krein M.G., Langer G.K. (1963). On the spectral function of a self-adjoint operator in a space with indefinite metric. Dokl. Akad. Nauk SSSR 152:39–42

    MathSciNet  Google Scholar 

  16. Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Functional analysis (Dubrovnik, 1981), Volume 948 of Lecture Notes in Math., Berlin: Springer-Verlag, 1982, pp. 1–46.

  17. Langer, H., Najman, B.: A Krein space approach to the Klein–Gordon equation. Unpublished manuscript, 1996

  18. Langer, H., Najman, B., Tretter, C.: Spectral theory of the Klein–Gordon equation in Krein spaces. Submitted, 2006

  19. Lundberg L.-E. (1973). Relativistic quantum theory for charged spinless particles in external vector fields. Commun. Math. Phys. 31:295–316

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lundberg L.-E. (1973). Spectral and scattering theory for the Klein–Gordon equation. Comm. Math. Phys. 31:243–257

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Naimark M.A. (1966). Analog of Stone’s theorem for a space with an indefinite metric. Dokl. Akad. Nauk SSSR 170:1259–1261

    MathSciNet  Google Scholar 

  22. Najman B. (1979). Solution of a differential equation in a scale of spaces. Glas. Mat. Ser. III 14(34)(1):119–127

    MathSciNet  Google Scholar 

  23. Najman B. (1980). Spectral properties of the operators of Klein–Gordon type. Glas. Mat. Ser. III, 15(35)(1):97–112

    MathSciNet  Google Scholar 

  24. Najman B. (1980). Localization of the critical points of Klein–Gordon type operators. Math. Nachr. 99:33–42

    Article  MathSciNet  MATH  Google Scholar 

  25. Najman B. (1983). Eigenvalues of the Klein–Gordon equation. Proc. Edinburgh Math. Soc. (2) 26(2):181–190

    Article  MathSciNet  MATH  Google Scholar 

  26. Reed M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975

  27. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978

  28. Schechter M. (1976). The Klein–Gordon equation and scattering theory. Ann. Phys. 101(2):601–609

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Simon B. (1971). Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton University Press, Princeton NJ

    MATH  Google Scholar 

  30. Schiff L., Snyder H., Weinberg J. (1940). On the existence of stationary states of the mesotron field. Phys. Rev. 57:315–318

    Article  ADS  Google Scholar 

  31. Triebel H. (1992). Theory of function spaces. II, Volume 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel

    Google Scholar 

  32. Veselić K. (1983). On the nonrelativistic limit of the bound states of the Klein–Gordon equation. J. Math. Anal. Appl. 96(1):63–84

    Article  MathSciNet  MATH  Google Scholar 

  33. Weder R. (1977). Selfadjointness and invariance of the essential spectrum for the Klein–Gordon equation. Helv. Phys. Acta 50(1):105–115

    MathSciNet  Google Scholar 

  34. Weder R.A. (1978). Scattering theory for the Klein–Gordon equation. J. Funct. Anal. 27(1):100–117

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Langer.

Additional information

Communicated by B. Simon

Branko Najman: Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, H., Najman, B. & Tretter, C. Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces. Commun. Math. Phys. 267, 159–180 (2006). https://doi.org/10.1007/s00220-006-0022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0022-4

Keywords