Skip to main content
Log in

Landau-de Gennes Model of Liquid Crystals and Critical Wave Number

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study some variational problems of the Landau-de Gennes functional under Neumann or Dirichlet boundary conditions, which describes phase transitions of liquid crystals. We investigate the effect of the parameters, especially the chirality and the wave number, on the behavior of the minimizers. In order to describe bifurcation of a smectic phase from a nematic phase we introduce the critical wave number Q c3 and give various estimates. We examine the behavior of minimizers with small chirality and large elastic coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12, 1–16 (1987)

    Google Scholar 

  2. Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Royal Soc. Edinburgh 129 A(1), 1–17 (1999)

    MATH  Google Scholar 

  3. Ambrosio, L., DeLellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. 9, 327–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices, Birkhäuser, Boston-Basel-Berlin, 1994

  5. Bauman, P., Calderer, M., Liu, C., Phillips, D.: The phase transition between chiral nematic and smectic A * liquid crystals. Arch. Rational Mech. Anal. 165, 161–186 (2002)

    Article  Google Scholar 

  6. Calderer, M.C.: Studies of layering and chirality of smectic A * liquid crystals. Math. comput. Modelling 34, 1273–1288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J.-H., Lubensky, T.: Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys. Rev. A 14(3), 1202–1207 (1976)

    Article  Google Scholar 

  8. Chapman, S.J., Howison, S.D., Ockendon, J.R.: Macroscopic models for superconductivity. SIAM Rev. 34, 529–560 (1992)

    MathSciNet  MATH  Google Scholar 

  9. De Gennes, P.G.: Superconductivity of Metals and Alloys. New York: W.A. Benjamin, Inc., 1966

  10. de Gennes, P.G.: An analogy between superconductors and smectics A. Solid State Commun. 10, 753-756 (1972)

    Article  Google Scholar 

  11. de Gennes, P.G.: Mol. Cryst. Liq. Cryst. 21, 49 (1973)

    Google Scholar 

  12. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Second edition, Oxford: Oxford Science Publications 1993

  13. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34, 45–81 (1992)

    Google Scholar 

  14. Dauge, M., Helffer, B.: Eigenvalues variation, I, Neumann problem for Sturm-Liouville operators. J. Differential Equations 104, 243–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. DeSimone, A., Kohn, R., Müller, S., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh 131 A(4), 833–844 (2001)

    MATH  Google Scholar 

  16. Ericksen, J.: General solutions in the hydrostatic theory of liquid crystals. Trans. Soc. Rhelogy 11(1), 5–14 (1967)

    MATH  Google Scholar 

  17. Glowinski, R., Lin, P., Pan, X.-B.: An operator-splitting method for a liquid crystal model. Computer Physics Communications 152, 242–252 (2003)

    Article  Google Scholar 

  18. Giorgi, T., Phillips, D.: The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model. SIAM J. Math. Anal. 30, 341–359 (1999)

    MATH  Google Scholar 

  19. Goodby, J., Waugh, M., et al.: Characterization of a new helical smectic liquid-crystal. Nature 337(6206), 449–452 (1989)

    Article  Google Scholar 

  20. Goodby, J., Waugh, M., et al.: A new molecular ordering in helical liquid-crystals. J. Amer. Chem. Soc. 111(21), 8119–8125 (1989)

    Google Scholar 

  21. Hardt, R., Kinderlehrer, D., Lin, F.H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3, preprint

  23. Jin, W., Kohn, R., Singular perturbation and the energy of folds. J. Nonlinear Sci. 10, 355–390 (2000)

    Google Scholar 

  24. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystals, phase transitions and flow phenomena. Commun. on Pure and Appl. 42, 789–814 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Lin, F.H.: Solutions of Ginzburg-Landau equations and critical points of the renormalized energy. Ann. Inst. Henri Poincaré Anal. Non Linéaire 12, 599–622 (1995)

    MATH  Google Scholar 

  26. Lu, K., Pan, X.B.: Gauge invariant eigenvalue problems in ℝ2 and in ℝ2 +. Trans. Amer. Math. Soc. 352, 1247–1276 (2000)

    Article  MATH  Google Scholar 

  27. Lu, K., Pan, X.B.: Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D (1271–2), 73–104 (1999)

    Google Scholar 

  28. Lu, K., Pan, X.B.: Surface nucleation of superconductivity in 3-dimension. J. Differential Equations 168, 386–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lubensky, T., Renn, S.: Twist-grain-boundary phases near the nematic–smectic-A–smectic-A–smectic-C point in liquid crystals. Phys. Rev. A 41(8), 4392–4401 (1990)

    Article  Google Scholar 

  30. McMillan, W.L.: Measurement of smectic-A-phase order-parameter fluctuations in the nematic phase of p-n-octyloxybenzylidene-p'-toluidine. Phys. Rev. A 7(5), 1673–1678 (1973)

    Article  Google Scholar 

  31. Ou, B.: Examinations on a three-dimensional differentiable vector field that equals its own curl, preprint

  32. Pan, X.B.: Surface superconductivity in applied fields above H C 2. Commun. Math. Phys. 228, 327–370 (2002)

    Article  MATH  Google Scholar 

  33. Pan, X.B.: Surface superconductivity in 3-dimensions, preprint

  34. Pan, X.B.: Superconductivity near critical temperature. J. Math. Phys. 44, 2639–2678 (2003)

    Article  Google Scholar 

  35. Pan, X.B., Qi, Y.: Asymptotics of minimizers of variational problems involving curl functional. J. Math. Phys. 41, 5033–5063 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Renn, S., Lubensky, T.: Abrikosov dislocation lattice in a model of the cholesteric–to–smectic-A transition. Phys. Rev. A 38(4), 2132–2147 (1988)

    Article  Google Scholar 

  37. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis, 3rd eds., AMS Chelsea Publishing, Providence, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Bin Pan.

Additional information

A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, XB. Landau-de Gennes Model of Liquid Crystals and Critical Wave Number. Commun. Math. Phys. 239, 343–382 (2003). https://doi.org/10.1007/s00220-003-0875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0875-8

Keywords

Navigation