Skip to main content
Log in

Bose-Einstein correlations of pion wavepackets

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity λ as localization of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied:

  1. 1.

    A Monte Carlo procedure in momentum space based on the standard Metropolis technique.

  2. 2.

    A molecular dynamic procedure using Bohm’s quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context the influence of an unauthorized factorization of the state, i. e. the omission of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplicities, where the omission of higher order corrections in the analysis of two-particle correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and the source is investigated. The results suggest that Coulomb effects on the correlation radii are not symmetric for pion pairs of different charges. For (π) pairs the radius, integrated over the whole momentum spectrum, increases substantially, while for (π++) pairs the radius remains almost unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L’Hote, Saclay preprint DAPNIA/SPhN. 92.14 (1992)

  2. R. Stock, Nucl. Phys. A 544, 405c (1992)

    Article  ADS  Google Scholar 

  3. R. Hanbury Brown and R. Q. Twiss, Proc. Roy. Soc. (London) A243, 291 (1957)

    ADS  Google Scholar 

  4. B. Blättel, V. Koch and U. Mosel, Rep. Prog. Phys. 56, 1 (1993)

    Article  ADS  Google Scholar 

  5. J. Aichelin and H. Stöcker, Phys. Lett. B 176, 14 (1986) J. Aichelin, Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  6. S. Pratt, T. Csörgő and J. Zimányi, Phys. Rev. C 42, 2646 (1990)

    Article  ADS  Google Scholar 

  7. Y. Z. Jiang, L. Huo, Y. M. Liu, S. Wang, D. Kane, S. Y. Chu and S. Y. Fung, Phys. Rev. C 44, 1957 (1991)

    Article  ADS  Google Scholar 

  8. H. Merlitz and D. Pelte, Z. Phys. A 351, 187 (1995)

    Article  ADS  Google Scholar 

  9. W. A. Zajc, Phys. Rev. D 35, 11 (1987)

    Article  Google Scholar 

  10. D. H. Boal, C. K. Gelbke and B. K. Jennings, Rev. Mod. Phys. 63, 553 (1990)

    Article  ADS  Google Scholar 

  11. W. A. Zajc, Nuclear Physics A 525, 315c (1991)

    Article  ADS  Google Scholar 

  12. B. R. Schlei, U. Ornik, M. Plümer and R. M. Weiner, Phys. Lett. B 293, 275 (1992)

    Article  ADS  Google Scholar 

  13. M. Herrmann and G. F. Bertsch, Phys. Rev. C 51, 328 (1994)

    Article  ADS  Google Scholar 

  14. S. Chapman, R. Nix and U. Heinz, Phys. Rev. C 52, 2694 (1995)

    Article  ADS  Google Scholar 

  15. Yu. M. Sinyukov and A. Yu. Tolstykh, Z. Phys. C 61, 593 (1994)

    Article  ADS  Google Scholar 

  16. S. Padula, M. Gyulassy and S. Gavin, Nuclear Physics B 329, 357 (1990)

    Article  ADS  Google Scholar 

  17. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984)

    Article  ADS  Google Scholar 

  18. R. Holzmann and the TAPS collaboration, GSI report GSI-94-1, 79 (1995)

  19. G. Goebels, Thesis, Universität Heidelberg, 1995, unpublished

  20. N. Metropolis, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  21. K. H. Hoffmann and M. Schreiber, “Computational Physics”, p. 47, Springer-Verlag y1996)

  22. A. Nijenhuis and H. S. Wilf, “Combinatorial Algorithms”, Academic Press, New York (1978)

    Google Scholar 

  23. C. Sturtivant, Linear Multilinear Algebra 33, 145 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Bohm, Phys. Rev. 85, 166 and 180 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. D. Bohm, Phys. Rev. 89, 458 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. P.R. Holland, “The Quantum Theory of Motion”, Cambridge University Press 1993

  27. H. W. Barz, Phys. Rev. C 53, 2536 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Merlitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlitz, H., Pelte, D. Bose-Einstein correlations of pion wavepackets. Z Phys A - Particles and Fields 357, 175–188 (1997). https://doi.org/10.1007/s002180050232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002180050232

PACS

Navigation