Skip to main content
Log in

RPA description of the electric polarizability of the nucleon

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

Excited states of the nucleon are described as RPA configurations on a mean-field ground state taken from the MIT bag model. A residual interaction of a structure as in the Nambu-Jona-Lasinio model is used. The particlehole states are coupled to good total angular momentum and isospin. Valence excitations of particle-hole type and quark-antiquark (q\(\bar q\)) states from the Dirac-sea are included. The dependence of the baryon spectrum and multipole response functions on the coupling constantG is studied. At critical values ofG the 3q-ground state becomes degenerate with strongly collectiveq99-2 modes. The model is used to calculate the averaged electric polarizability of the neutron and the protonα. Without residual interactionα=7·10−4 fm 3 is found. With residual interaction the value increases toα=(−11)·10−4 fm 3. The measured value ofα is reproduced within experimental error bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Federspiel et al.: Phys. Rev. Lett.67, 1511 (1991)

    Article  ADS  Google Scholar 

  2. J. Schmiedmayer et al.: Phys. Rev. Lett.66, 1015 (1991)

    Article  ADS  Google Scholar 

  3. A. Ziegler et al.: Phys. Lett.B 278, 34 (1992)

    ADS  Google Scholar 

  4. I. Zahed, G. E. Brown: Phys. Rep.142, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Scherer, P.J. Mulders: Nucl.Phys.A 549, 521 (1992)

    ADS  Google Scholar 

  6. E. M. Nyman: Phys Lett.B 142, 388 (1984)

    ADS  Google Scholar 

  7. P. C. Hecking, G. F. Bertsch: Phys. Lett.B 99, 237 (1981)

    ADS  Google Scholar 

  8. A. Schaefer et al.: Phys. Lett.B 143, 323 (1984)

    ADS  Google Scholar 

  9. R. Weiner, W. Weise: Phys. Lett.B 159, 85 (1985)

    ADS  Google Scholar 

  10. V. Bernard et al.: Phys. Lett.B 205, 16 (1988)

    ADS  Google Scholar 

  11. W. Broniowsky, M. K. Banerjee, T. D. Cohen: Phys. Lett.283, 22 (1992)

    Google Scholar 

  12. W. Broniowsky, T. D. Cohen: Phys. Rev.D 47, 299 (1993)

    ADS  Google Scholar 

  13. E. M. Nikolov, W. Broniowsky, K. Goeke: Nucl. Phys.A 579, 389, (1994)

    Google Scholar 

  14. N. N. Scoccola, W. Weise: Phys. Lett.B 232, 287 (1989)

    ADS  Google Scholar 

  15. N. N. Scoccola, W. Weise: Nucl. Phys.A 517, 495 (1990)

    ADS  Google Scholar 

  16. M. Chemtop: Nucl. Phys.A 473, 613 (1987)

    ADS  Google Scholar 

  17. V. Bernard et al.: Phys. Lett.B 319, 269 (1993)

    ADS  MathSciNet  Google Scholar 

  18. V. Bernard et al.: Z. Phys.A 348, 317 (1994)

    Google Scholar 

  19. M Traini, R. Leonardi: Phys. Lett.B 334, 7 (1994)

    ADS  Google Scholar 

  20. Y. Nambu, G. Jona-Lasinio: Phys. Rev.122, 345 (1961)

    Article  ADS  Google Scholar 

  21. T. A. DeGrand: Annals of Physics101, 496 (1976)

    Article  ADS  Google Scholar 

  22. T. A. DeGrand, R. L. Jaffe: Annals of Physics100, 425 (1976)

    Article  ADS  Google Scholar 

  23. D. C. Rowe, C. Ngo-Trong: Rev. Mod. Phys.47, 471 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Hardt: Hadrons ’95 Proceedings,Excitations of the Nucleon within the Random Phase Approximation, World Scientific, Singapore

  25. S. Klimt, M. Lutz, U. Vogl, W. Weise: Nucl. Phys.A 516, 429 (1990)

    ADS  Google Scholar 

  26. J. A. McNeil, R. J. Furnstahl, E. Rost, J. R. Shepard: Phys. RevC 40, 399 (1989)

    ADS  Google Scholar 

  27. J. A. McNeil, E. Rost, J. R. Shepard: Phys. RevC 40, 2320 (1989)

    ADS  Google Scholar 

  28. A. Chodos, R. Jaffe, K. Johnson, C. Torn, V. Weisskopf: Phys. Rev.D 9, 3471 (1974)

    ADS  Google Scholar 

  29. D.J. Rowe: Nuclear Collective Motion, Menthuen, New York, 1966

    Google Scholar 

  30. A.L. Fetter, S.D. Walecka: Quantum Theory of Many-Particle System, McGraw-Hill, New York, 1971

    Google Scholar 

  31. J.W. Negele, H. Orland: Quantum Many-Particle System, Addison-Wesley, New York, 1988

    Google Scholar 

  32. H. Lenske, J. Wambach: Phys.Lett.B 249, 377 (1990)

    ADS  Google Scholar 

  33. S.P. Klevansky: Rev.Mod.Phys.64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Schüren, F. Döring, E. Ruiz Arriola, K. Goeke: Nucl. PhysA 595, 687, (1993)

    ADS  Google Scholar 

  35. R. Alkhofer, H. Reinhardt, H. Weigel: Tübingen preprint No UNITUTHEP-25 (1994)

  36. C. Itzykson, J. Zuber:Quantum Field Theory, McGraw Hill, Singapore 1987

    Google Scholar 

  37. V. Bernard, R. Brockmann, M. Schaden, W. Weise, E. Werner: Nucl. Phys.A 412, 349 (1984)

    ADS  Google Scholar 

  38. N. Isgur und G. Karl: Phys. Lett.72 B, Nr. 1, (1977) 109

    ADS  Google Scholar 

  39. N. Isgur und G. Karl: Phys. Rev.D 18, (1978) 4187

    ADS  Google Scholar 

  40. U. Mosel:Quarks, Fields and Symmetries, McGraw Hill, Hamburg 1989

    Google Scholar 

  41. P. Ring, P. Schuck:The Nuclear Many-Body Problem, Berlin 1980

  42. M. Goshtasbpour, G. P. Ramsey: hep-ph/9601280 Xiangdong Ji: hep-ph/9510362

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Weise

Supported by GSI and BMBF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiss, J., Lenske, H. & Mosel, U. RPA description of the electric polarizability of the nucleon. Z. Physik A - Hadrons and Nuclei 356, 99–106 (1996). https://doi.org/10.1007/s002180050153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002180050153

PACS

Navigation