Skip to main content
Log in

Spelt authenticity assessment using a rapid and simple Fourier transform infrared spectroscopy (FTIR) method combined to advanced chemometrics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

An ever-increased cultivation and market interest towards spelt (Triticum spelta) has been noticed indicating the need to develop analytical methods assessing the authenticity of this underutilized cereal commodity. In this study, an attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) method was developed and combined to a supervised chemometric tool, specifically orthogonal partial least square discriminant analysis (OPLS-DA). The validated model efficiently discriminated spelt (n = 22) over the widely used common wheat (Triticum aestivum) (n = 25) providing strong predictive power (goodness of fit, R2Y = 0.918 and model predictability, Q2 = 0.906). In addition, adulterated samples were used as an external validation set, and the developed OPLS-DA model identified the spelt-common wheat mixtures as a separate class highlighting its strong predictive power. In terms of the analysis, the method was rapid (less than a minute per run) and no sample preparation was needed. The major chemical composition of the tested samples was also revealed due to the structural information provided by the FTIR spectroscopy. All in all, the developed method is simple, cost-efficient and non-destructive indicating its high potential as a fast screening tool in cereal authenticity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. European Commission, Cereal Statistics (2022) https://agriculture.ec.europa.eu/data-and-analysis/markets/overviews/market-observatories/crops/cereals-statistics_en. Accessed 20 Sep 2022

  2. European Commission, Cereals Market Situation (2022) https://circabc.europa.eu/sd/a/98826879-f6a2-4931-b2fc-4780ee466338/cereals-market-situation.pdf. Accessed 20 Sep 2022

  3. Silletti S, Morello L, Gavazzi F et al (2019) Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Food Chem 271:410–418. https://doi.org/10.1016/j.foodchem.2018.07.178

    Article  CAS  PubMed  Google Scholar 

  4. Bernas J, Konvalina P, Burghila DV et al (2020) The energy and environmental potential of waste from the processing of hulled wheat species. Agriculture 10:592

    Article  CAS  Google Scholar 

  5. Oehen B, Moschitz H (2018) More than wheat-the market potential of currently underutilised cereal crops. Book of abstracts .13th European international, farming systems association (IFSA) symposium farming systems: facing uncertainties and enhancing opportunities. ISFA, Chania, pp 1–11

    Google Scholar 

  6. Ministry of Agriculture of the Czech Republic (2022) We support traditions and rural development in the Czech Republic. https://eagri.cz/public/web/en/mze/publications/ministry-of-agriculture-of-the-czech.html. Accessed 20 Sep 2022

  7. Koenig A, Konitzer K, Wieser H, Koehler P (2015) Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chem 168:176–182. https://doi.org/10.1016/j.foodchem.2014.07.040

    Article  CAS  PubMed  Google Scholar 

  8. Starzyńska-Janiszewska A, Stodolak B, Socha R et al (2019) Spelt wheat tempe as a value-added whole-grain food product. LWT 113:108250. https://doi.org/10.1016/j.lwt.2019.108250

    Article  CAS  Google Scholar 

  9. Frakolaki G, Giannou V, Topakas E, Tzia C (2018) Chemical characterization and breadmaking potential of spelt versus wheat flour. J Cereal Sci 79:50–56. https://doi.org/10.1016/j.jcs.2017.08.023

    Article  CAS  Google Scholar 

  10. Brouns F, van Rooy G, Shewry P et al (2019) Adverse reactions to wheat or wheat components. Compr Rev Food Sci Food Saf 18:1437–1452

    Article  PubMed  Google Scholar 

  11. Liu H-Y, Wadood SA, Xia Y et al (2021) Wheat authentication: an overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 13:1–24

    Google Scholar 

  12. Bönick J, Huschek G, Rawel HM (2017) Determination of wheat, rye and spelt authenticity in bread by targeted peptide biomarkers. J Food Compos Anal 58:82–91. https://doi.org/10.1016/j.jfca.2017.01.019

    Article  CAS  Google Scholar 

  13. Laursen KH, Schjoerring JK, Olesen JE et al (2011) Multielemental fingerprinting as a tool for authentication of organic wheat, barley, faba bean, and potato. J Agric Food Chem 59:4385–4396. https://doi.org/10.1021/jf104928r

    Article  CAS  PubMed  Google Scholar 

  14. Valand R, Tanna S, Lawson G, Bengtström L (2020) A review of Fourier transform infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit Contam Part A 37:19–38

    Article  CAS  Google Scholar 

  15. De Girolamo A, Arroyo MC, Cervellieri S et al (2020) Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: a case study. LWT 127:109368. https://doi.org/10.1016/j.lwt.2020.109368

    Article  CAS  Google Scholar 

  16. Medina S, Perestrelo R, Silva P et al (2019) Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 85:163–176. https://doi.org/10.1016/j.tifs.2019.01.017

    Article  CAS  Google Scholar 

  17. Mendes E, Duarte N (2021) Mid-infrared spectroscopy as a valuable tool to tackle food analysis: a literature review on coffee dairies, honey, olive, oil and wine. Foods 10:477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliveri P, Malegori C, Simonetti R, Casale M (2019) The impact of signal pre-processing on the final interpretation of analytical outcomes—a tutorial. Anal Chim Acta 1058:9–17. https://doi.org/10.1016/j.aca.2018.10.055

    Article  CAS  PubMed  Google Scholar 

  19. Granato D, Santos JS, Escher GB et al (2018) Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective. Trends Food Sci Technol 72:83–90. https://doi.org/10.1016/j.tifs.2017.12.006

    Article  CAS  Google Scholar 

  20. Biancolillo A, Marini F, Ruckebusch C, Vitale R (2020) Chemometric strategies for spectroscopy-based food authentication. Appl Sci 10:6544

    Article  CAS  Google Scholar 

  21. Lixourgioti P, Goggin KA, Koria Zhao X et al (2021) Authentication of cinnamon spice samples using FT-IR spectroscopy and chemometric classification. LWT 154:112760. https://doi.org/10.1016/j.lwt.2021.112760

    Article  CAS  Google Scholar 

  22. Bylesjö M, Rantalainen M, Cloarec O et al (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom A J Chemom Soc 20:341–351

    Google Scholar 

  23. Xia J, Wishart DS (2011) Metabolomic data processing, analysis, and interpretation using metaboanalyst. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi1410s34

    Article  Google Scholar 

  24. Westerhuis JA, van Velzen EJJ, Hoefsloot HCJ, Smilde AK (2010) Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6:119–128

    Article  CAS  PubMed  Google Scholar 

  25. Lohumi S, Lee S, Cho B-K (2015) Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sens Actuators B Chem 216:622–628

    Article  CAS  Google Scholar 

  26. Gosselin R, Rodrigue D, Duchesne C (2010) A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemom Intell Lab Syst 100:12–21. https://doi.org/10.1016/j.chemolab.2009.09.005

    Article  CAS  Google Scholar 

  27. Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLS and OPLS® models. J Chemom A J Chemom Soc 22:594–600

    CAS  Google Scholar 

  28. Amir RM, Anjum FM, Khan MI et al (2013) Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J Food Sci Technol 50:1018–1023

    Article  CAS  PubMed  Google Scholar 

  29. Ji Y, Yang X, Ji Z et al (2020) DFT-Calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega 5:8572–8578. https://doi.org/10.1021/acsomega.9b04421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arslan FN, Akin G, Elmas ŞNK et al (2020) FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J Consum Prot Food Saf 15:245–261

    Article  CAS  Google Scholar 

  31. Haard NF (1999) Fermented cereals: a global perspective. Food & Agriculture Organization, Rome

    Google Scholar 

  32. Suchowilska E, Kandler W, Wiwart M, Krska R (2012) Fourier transform infrared-attenuated total reflection for wheat grain. Int Agrophys 26:207–210

    Article  CAS  Google Scholar 

  33. Wiwart M, Kandler W, Suchowilska E, Krska R (2015) Discrimination between the grain of spelt and common wheat hybrids and their parental forms using Fourier transform infrared-attenuated total reflection. Int J Food Prop 18:54–63

    Article  CAS  Google Scholar 

  34. Naumann A, Heine G, Rauber R (2010) Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. F Crop Res 119:78–84

    Article  Google Scholar 

  35. Formosa JP, Lia F, Mifsud D, Farrugia C (2020) Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands. Foods 9:710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28:213–225

    Article  CAS  Google Scholar 

  37. Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst 118:62–69. https://doi.org/10.1016/j.chemolab.2012.07.010

    Article  CAS  Google Scholar 

  38. Türker-Kaya S, Huck CW (2017) A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Mol. 22:168

    Article  Google Scholar 

  39. Xin H, Zhang Y, Wang M et al (2014) Characterization of protein and carbohydrate mid-IR spectral features in crop residues. Spectrochim Acta Part A Mol Biomol Spectrosc 129:565–571. https://doi.org/10.1016/j.saa.2014.03.009

    Article  CAS  Google Scholar 

  40. Bodroža-Solarov M, Grobelnik-Mlakar S, Pezo L et al (2021) Identification of biomarkers in hydrosoluble extracts from spelt and wheat cultivated in different production systems. J Sci Food Agric 101:3413–3421

    Article  PubMed  Google Scholar 

  41. Unuvar A, Boyaci IH, Koksel H (2021) A novel approach for rapid discrimination of common and durum wheat flours using spectroscopic analyses combined with chemometrics. J Cereal Sci 100:103269. https://doi.org/10.1016/j.jcs.2021.103269

    Article  CAS  Google Scholar 

  42. Kelis Cardoso VG, Poppi RJ (2021) Cleaner and faster method to detect adulteration in cassava starch using Raman spectroscopy and one-class support vector machine. Food Control 125:107917. https://doi.org/10.1016/j.foodcont.2021.107917

    Article  CAS  Google Scholar 

  43. Vermeulen P, Suman M, Fernández Pierna JA, Baeten V (2018) Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging. J Cereal Sci 84:74–82. https://doi.org/10.1016/j.jcs.2018.10.001

    Article  CAS  Google Scholar 

  44. Cozzolino D (2016) 7-Near Infrared Spectroscopy and Food Authenticity. In: Espiñeira M, Santaclara FJBT-A (eds) Woodhead publishing series in food science technology and nutrition. Woodhead Publishing, Sawston, pp 119–136

    Google Scholar 

  45. De Girolamo A, Cervellieri S, Mancini E et al (2020) Rapid authentication of 100% italian durum wheat pasta by ft-nir spectroscopy combined with chemometric tools. Foods 9:1551

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rodríguez SD, Rolandelli G, Buera MP (2019) Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chem 274:392–401. https://doi.org/10.1016/j.foodchem.2018.08.140

    Article  CAS  PubMed  Google Scholar 

  47. Lee LC, Liong C-Y, Jemain AA (2017) A contemporary review on Data Preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemom Intell Lab Syst 163:64–75. https://doi.org/10.1016/j.chemolab.2017.02.008

    Article  CAS  Google Scholar 

  48. Rinnan Å, van den Berg F, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. TrAC-Trends Anal Chem 28:1201–1222. https://doi.org/10.1016/j.trac.2009.07.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by METROFOOD-CZ research infrastructure project (MEYS Grant No: LM2018100) including access to its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsagkaris.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 257 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsagkaris, A.S., Kalogiouri, N., Hrbek, V. et al. Spelt authenticity assessment using a rapid and simple Fourier transform infrared spectroscopy (FTIR) method combined to advanced chemometrics. Eur Food Res Technol 249, 441–450 (2023). https://doi.org/10.1007/s00217-022-04128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04128-2

Keywords

Navigation