Skip to main content
Log in

PCR–RFLP and species-specific PCR efficiency for the identification of adulteries in meat and meat products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The traceability of meat origin has become a necessity to safeguard consumer's confidence in commercial meat products. Our study recommends a meat species detection using qualitative approach based on PCR–RFLP and species-specific primers PCR. Here, we targeted a 359 bp fragment of the mitochondrial cytochrome b gene amplified by PCR using universal primers followed by three enzymatic digestions. Seven animal species including dromedary, rabbit, goat, turkey, rat, donkey and pork, have been efficiently detected in pure and mixed samples. The combination of PCR–RFLP and triplex PCR assays offers, in addition, the identification of chicken, dog and cat species in meat. In conclusion, by the mean of PCR-based techniques using universal primers followed by enzymatic digestion and multiplex primer-specific approach, we developed an extensible protocol by which we identified 10 animal species that could be integrated in meat analysis daily routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

DNA:

Deoxyribonucleic acid

mtDNA:

Mitochondrial deoxyribonucleic acid

MSA:

Multiple sequence alignment

PCR:

Polymerase chain reaction

PCR–RFLP:

Restriction fragment length polymorphism polymerase chain reaction

PCR-SSCP:

Single-strand conformation polymorphism polymerase chain reaction

EDTA:

Ethylenediaminetetraacetic acid

D-loop:

Displacement loop

MgCl2 :

Magnesium chloride

dNTP:

Deoxynucleotide

DMSO:

Dimethyl sulfoxide

Cyt b:

Cytochrome b

CaSSR:

Cat species-specific region

DoSSR:

Dog species-specific region

NEBcutter:

NEB—New England Biolabs cutter

References

  1. Wu H, Qian C, Wang R, Wu C, Wang Z, Wang L, Zhang M, Ye Z, Zhang F, He J-S, Wu J (2020) Identification of pork in raw meat or cooked meatballs within 20 min using rapid PCR coupled with visual detection. Food Control 109:106905

    Article  CAS  Google Scholar 

  2. Kang T-S (2019) Basic principles for developing real-time PCR methods used in food analysis: a review. Trends Food Sci Technol 91:574–585

    Article  CAS  Google Scholar 

  3. Song Q, Chen Y, Zhao L, Ouyang H, Song J (2019) Monitoring of sausage products sold in Sichuan Province, China: a first comprehensive report on meat species’ authenticity determination. Sci Rep 9:1–9

    Article  Google Scholar 

  4. Drupad KT, Katherine AH, Nicholas JWR, Holli W, Dakshat KT, Joseph G, David IE, Royston G (2016) Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 141:2155

    Article  CAS  Google Scholar 

  5. Ahmed N, Sangale D, Tiknaik A, Prakash B, Hange R, Sanil R, Khan S, Khedkar G (2018) Authentication of origin of meat species processed under various Indian culinary procedures using DNA barcoding. Food Control 90:259–265

    Article  CAS  Google Scholar 

  6. Hossain MM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME (2020) Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 1–26

  7. Li Y-C, Liu S-Y, Meng F-B, Liu D-Y, Zhang Y, Wang W, Zhang J-M (2020) Comparative review and the recent progress in detection technologies of meat product adulteration. CRFSFS 19:2256–2296

    CAS  Google Scholar 

  8. Ross A, Brunius C, Chevallier O, Dervilly G, Elliott C, Guitton Y, Prenni JE, Savolainen O, Hemeryck L, Vidkjaer NH, Scollan N, Stead SL, Zhang R, Scollan N (2020) Making complex measurements of meat composition fast: Application of rapid evaporative ionisation mass spectrometry to measuring meat quality and fraud. Meat Sci 108333

  9. Abbots E-J, Coles B (2013) Horsemeat-gate: the discursive production of a neoliberal food scandal. Food Cult Soc 16:535–550

    Article  Google Scholar 

  10. Nau J-Y (2013) Horse meat: first lessons of a scandal. Rev Med Suisse 9:532

    PubMed  Google Scholar 

  11. Hsieh Y-H-P, Ofori J-A (2014) Detection of horse meat contamination in raw and heat-processed meat products. J Agric Food Chem 62:12536–12544

    Article  CAS  PubMed  Google Scholar 

  12. Kane D (2015) Identification of species in ground meat products sold on the U.S. commercial market using DNA-based methods. Master's thesis, Chapman University

  13. Qiuchi S, Yiwu C, Liming Z, Hongsheng O, Jun S (2019) Monitoring of sausage products sold in Sichuan Province, China: a first comprehensive report on meat species’ authenticity determination. Sci Rep 9:1

    Google Scholar 

  14. Abbas O, Zadravec M, Baeten V, Mikuš T, Lešić T, Vulić A, Prpić J, Jemeršić L, Pleadin J (2018) Analytical methods used for the authentication of food of animal origin. Food Chem 246:6–17

    Article  CAS  PubMed  Google Scholar 

  15. Cavin C, Cotteneta G, Kevin M-C, Pascal Z (2018) Meat vulnerabilities to economic food adulteration require new analytical solutions. Food AnAlysis MeAt And MeAt Prod 72:697–703

    CAS  Google Scholar 

  16. Gargouri H, HadjKacem H (2018) Evaluation of alternative DNA extraction protocols for the species determination in turkey salami authentication tests. Int J Food Prop 21:733

    Article  CAS  Google Scholar 

  17. Alikord M, Momtaz H, Keramat J, Kadivar M, Homayouni RA (2017) Species identification and animal authentication in meat products: a review. Food Measure 12:145

    Article  Google Scholar 

  18. Kaltenbrunner M, Hochegger R, Cichna-Markl M (2018) Development and validation of a fallow deer (Dama dama)- specific TaqMan real-time PCR assay for the detection of food adulteration. Food Chem 243:82–90

    Article  CAS  PubMed  Google Scholar 

  19. Liu W, Tao J, Xue M, JiJ ZY, Zhang L, Sun W (2019) A multiplex PCR method mediated by universal primers for the identification of eight meat ingredients in food products. Eur Food Res Tech 245:2385–2392

    Article  CAS  Google Scholar 

  20. Lo Y-T, Shaw P-C (2018) DNA-based techniques for authentication of processed food and food supplements. Food Chem 240:767–774

    Article  CAS  PubMed  Google Scholar 

  21. Hang J, Sejeong K, Jeeyeon L, Soomin L, Heeyoung L, Yukyung C, Hyemin O, Yohan Y (2017) Identification of pork adulteration in processed meat products using the developed mitochondrial DNA-based primers. Korean J Food Sci Anim Resour 37:464–468

    Article  Google Scholar 

  22. Guan F, Jin Y, Zhao J, XU A, Luo Y (2018) A PCR method that can be further developed into PCR-RFLP assay for eight animal species identification. J Anal Methods Chem 5890140

  23. Jonker KM, Tilburg JJHC, Hägele GH, de Boer E (2008) Species identification in meat products using real-time PCR. Food Addit Contam Part A 25:527–533

    Article  CAS  Google Scholar 

  24. Thienes Ha Y, Agapov CP, Laznicka AA, Han AV, Nadala S, Samadpour MC (2018) Comparison of ELISA and DNA lateral flow assays for detection of pork, horse, beef, chicken, turkey, and goat contamination in meat products. J AOAC Int 102:189–195

    Google Scholar 

  25. Li XN, Guan YF (2019) Specific identification of the adulterated components in beef or mutton meats using multiplex PCR. J AOAC Int 102:1181–1185

    Article  CAS  PubMed  Google Scholar 

  26. Liu WW, Tao J, Xue M, Ji JG, Zhang YH, Zhang LJ, Sun WP (2019) A multiplex PCR method mediated by universal primers for the identification of eight meat ingredients in food products. Eur Food Res Tech 245:2385–2392

    Article  CAS  Google Scholar 

  27. Naaum A, Shehata H, Chen S, Li J, Tabujara N, Awmack D, Hanner R (2018) Complementary molecular methods detect undeclared species in sausage products at retail markets in Canada. Food Control 84:339–344

    Article  CAS  Google Scholar 

  28. Doosti A, Dehkordi PG, Rahim E (2014) Molecular assay to fraud identification of meat products. J Food Sci Technol 51:148–152

    Article  CAS  PubMed  Google Scholar 

  29. Kumar A, Rajiv R-K, Brahm D-S, Palanisamy G, Sanjod K-M, Deepak S (2015) Identification of species origin of meat and meat products on the DNA basis: a review. Crit Rev Food Sci Nutr 55:1340–1351

    Article  CAS  PubMed  Google Scholar 

  30. Shabani H, Mehdizadeh M, Mousavi S-M, Dezfouli E-A, Solgi T, Khodaverdi M, Rabiei M, Rastegar H, Alebouyeh M (2015) Halal authenticity of gelatin using species-specific PCR. Food Chem 184:203–206

    Article  CAS  PubMed  Google Scholar 

  31. Amorim A, Fernandes T, Taveira N (2019) Mitochondrial DNA in human identification: a review. PeerJ 7:7314

    Article  Google Scholar 

  32. Floren C, Wiedemann I, Brening B, Schutz E, Beck J (2015) Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chem 173:1054–1058

    Article  CAS  PubMed  Google Scholar 

  33. Mane B-G, Mendiratta S-K, Tiwari A-K (2009) Polymerase chain reaction assay for identification of chicken in meat and meat products. Food Chem 116:806–810

    Article  CAS  Google Scholar 

  34. Kocher T-D, Thomas W-K, Meyer A, Edwards S-V, Paabo S, Villablanca F-X (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawazaki E (1990) Sample preparation from blood, cells and other fluids. In: Innis M, Gelffand D, Snisky G, White T (eds) PCR protocols. A guide to methods and application. Academic Press, San Diego, pp 146–152

    Google Scholar 

  36. Abdulmawjood A, Schönenbrücher H, Bülte M (2003) Development of a polymerase chain reaction system for the detection of dog and cat meat in meat mixtures and animal feed. J Food Sci 68:1757

    Article  CAS  Google Scholar 

  37. Steven M-C, Marshall W-D (1991) Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic Cod (cadusMorhua) by the polymerase chain reaction. Can J Fish Aquat Sci 48:48–52

    Article  Google Scholar 

  38. Parson W, Karin P, Niederstätter H, Föger M, Martin S (2000) Species identification by means of cytochrome b gene. Int J Legal Med 114:23–28

    Article  CAS  PubMed  Google Scholar 

  39. Abdel-Rahman S-M, El-Saadani M-A, Ashry K-M, Haggag A-S (2009) Detection of adulteration and identification of Cat’s, Dog’s, Donkey’s and Horse’s meat using species-specific PCR and PCR-RFLP techniques. Aust J Basic Appl Sci 3:1716–1719

    CAS  Google Scholar 

  40. Minarovič T, Trakovická A, Rafayová A, Lieskovská Z (2010) Animal Species Identification by PCR – RFLP of Cytochrome b. J Anim Sci Biotechnol 43:296

    Google Scholar 

  41. D’Amato M-E, Alechine E, Cloete K-W, Davison S, Corach D (2013) Where is the game? Wild meat products authentication in South Africa: a case study. Investig Genet 4:1

    CAS  Google Scholar 

  42. Meyer R, Hoefelein C, Luethy J, Candrian U (1995) Polymerase chain reaction restriction fragment length polymorphism analysis : a simple method for species identification in food. J AOAC Int 78:1542–1551

    Article  CAS  PubMed  Google Scholar 

  43. Partis L, Croan D, Guo Z, Clark R, Coldham T, Murby J (2000) Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci 54:369–376

    Article  CAS  PubMed  Google Scholar 

  44. Bellagamba F, Moretti V-M, Comincini S, Valfrè F (2001) Identification of species in animal feed-stuffs by polymorphism chain reaction-restriction fragment length polymorphism analysis of mitochondrial DNA. J Agric Food Chem 49:3775–3781

    Article  CAS  PubMed  Google Scholar 

  45. Xing R-R, Wang N, Hu R-R, Zhang J-K, Han J-X, Chan Y (2019) Application of next generation sequencing for species identification in meat and poultry products: a DNA metabarcoding approach. Agris 101:173–179

    CAS  Google Scholar 

  46. Cottenet G, Carine B, Poh Fong C, Christophe C (2020) Evaluation and application of a next generation sequencing approach for meat species identification. Food Control 110:107003

    Article  CAS  Google Scholar 

  47. Maede D (2006) A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences. Eur Food Res Tech 224:209–217

    Article  CAS  Google Scholar 

  48. Bravi C-M, Liron J-P, Mirol P-M, Ripoli M-V, Garcia P-P, Giovambattista G (2004) A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. J Legal Med 6:246–251

    Article  CAS  Google Scholar 

  49. Ahmed M-M-M, Abdel-Rahman S-M, El-Hanafy A-A (2007) Application of species-specific polymerase chain reaction (PCR) for different meat species authentication. Biotechnol 6:426–430

    Article  CAS  Google Scholar 

  50. Abdel-Rahman SM (2017) Detection of adulteration and identification of meat and milk species using molecular genetic techniques. Agrotechnology

  51. Ahmad K, Ashfaq CM (2018) Water buffalo production in Turkey part 1: global trend and geographical distribution. Livestock 23:1

    CAS  Google Scholar 

  52. Cho A-R, Dong H-J, Cho S (2014) Meat species identification using loop-mediated isothermal amplification assay targeting species-specific mitochondrial DNA. Korean J Food Sci Anim Resour 34:799–807

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ha J, Kim S, Lee J, Lee S, Lee H, Choi Y, Yoon Y (2017) Identification of pork adulteration in processed meat products using the developed mitochondrial DNA-based primers. Korean J Food Sci Anim Resour 37:464–468

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Fatma KARRAY, Riadh BEN MARZOUG and Mohamed Arbi BEN YOUNES for providing necessary help. We also thank Prof. Saber MASMOUDI for pertinent discussions. The authors are also grateful to Kamel MAALOUL, translator and English professor for having proofread the manuscript.

Funding

The research was funded by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen Hadj Kacem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research does not include any studies with human subjects or animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargouri, H., Moalla, N. & Kacem, H.H. PCR–RFLP and species-specific PCR efficiency for the identification of adulteries in meat and meat products. Eur Food Res Technol 247, 2183–2192 (2021). https://doi.org/10.1007/s00217-021-03778-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03778-y

Keywords

Navigation