Skip to main content

Advertisement

Log in

Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Atmospheric cold plasma (ACP) is an emerging technology which has increased attraction due to the consumers’ tendency toward fresh and minimally processed food products. This non-thermal technology has been considered as a promising tool for decontamination of foods, modification of food components as well as food packaging. The potential interactions of cold plasma species with food components and consequently its effect on food quality is of high importance. Proteins are the main food constituent in food formulations regarding both nutritional and technological points of view. The susceptibility of native proteins to reactive species created through ACP treatment should be considered regarding the power supply, type of feeding gas and its pressure, exposure time, input voltage and current flow. However, the protein characteristics and the manner in which they are exposed are also important to be considered. This review article is aimed to investigate the technological and nutritional characteristics of proteins during atmospheric cold plasma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Surowsky B, Schlüter O, Knorr D (2015) Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev 7(2):82–108

    CAS  Google Scholar 

  2. Mollakhalili Meybodi N, Mohammadifar MA, Farhoodi M, Skytte JL, Abdolmaleki K (2017) Physical stability of oil-in-water emulsions in the presence of gamma irradiated gum tragacanth. J Dispers Sci Technol 38(6):909–916

    CAS  Google Scholar 

  3. Pérez-Andrés JM, Álvarez C, Cullen P, Tiwari BK (2019) Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innov Food Sci Emerg Technol 58:102205

    Google Scholar 

  4. Kamankesh M, Nematollahi A, Mohammadi A, Ferdowsi R (2020) Investigation of composition, temperature, and heating time in the formation of acrylamide in snack: central composite design optimization and microextraction coupled with gas chromatography-mass spectrometry. Food Anal Methods. https://doi.org/10.1007/s12161-020-01849-6

    Article  Google Scholar 

  5. Khorshidian N, Yousefi MA, Hosseini H, Shadnoush M, Mortazavian AM (2016) Potential anticarcinogenic effects of lactic acid bacteria and probiotics in detoxification of process-induced food toxicants. Iran J Cancer Prev. https://doi.org/10.17795/ijcp-7920

    Article  Google Scholar 

  6. Segat A, Misra N, Cullen P, Innocente N (2015) Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov Food Sci Emerg Technol 29:247–254

    CAS  Google Scholar 

  7. Ekezie F-GC, Sun D-W, Cheng J-H (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Google Scholar 

  8. Kramer A, Bekeschus S, Matthes R, Bender C, Stope MB, Napp M, Lademann O, Lademann J, Weltmann KD, Schauer F (2015) Cold physical plasmas in the field of hygiene—relevance, significance, and future applications. Plasma Processes Polym 12(12):1410–1422

    CAS  Google Scholar 

  9. Gavahian M, Khaneghah AM (2020) Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit Rev Food Sci Nutr 60(9):1581–1592

    CAS  PubMed  Google Scholar 

  10. Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS (2019) Non-thermal technologies and its current and future application in the food industry: a review. Int J Food Sci Technol 54(1):1–13

    Google Scholar 

  11. Zhu Y, Li C, Cui H, Lin L (2020) Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol 99:142–151

    CAS  Google Scholar 

  12. Hemmati V, Garavand F, Goudarzi M, Sarlak Z, Cacciotti I, Tiwari BK (2020) Cold atmospheric-pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14838

    Article  Google Scholar 

  13. Pankaj SK, Wan Z, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7(1):4

    PubMed Central  Google Scholar 

  14. Ozen E, Singh R (2020) Atmospheric cold plasma treatment of fruit juices: a review. Trends Food Sci Technol 103:144–151

    CAS  Google Scholar 

  15. Han Y, Cheng J-H, Sun D-W (2019) Activities and conformation changes of food enzymes induced by cold plasma: a review. Crit Rev Food Sci Nutr 59(5):794–811

    CAS  PubMed  Google Scholar 

  16. Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    CAS  Google Scholar 

  17. Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K (2014) Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J Phys D Appl Phys 47(28):285403

    Google Scholar 

  18. Fakhri Y, Nematollahi A, Abdi-Moghadam Z, Daraei H, Ghasemi SM (2020) Concentration of potentially harmful elements (PHEs) in trout fillet (rainbow and brown) fish: a global systematic review and meta-analysis and health risk assessment. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02419-x

    Article  PubMed  Google Scholar 

  19. Yousefi M, Khorshidian N, Hosseini H (2018) An overview of the functionality of inulin in meat and poultry products. Nutr Food Sci. https://doi.org/10.1108/NFS-11-2017-0253

    Article  Google Scholar 

  20. Foegeding EA (2015) Food protein functionality: a new model. J Food Sci 80(12):C2670–C2677

    CAS  PubMed  Google Scholar 

  21. Haque MA, Timilsena B, Adhikari B (2016) Food proteins, structure, and function. Reference module in food science. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-100596-5.03057-2

    Book  Google Scholar 

  22. Khorshidian N, Yousefi M, Shadnoush M, Mortazavian AM (2018) An overview of β-Glucan functionality in dairy products. Curr Nutr Food Sci 14(4):280–292

    CAS  Google Scholar 

  23. Mollakhalili Meybodi N, Mohammadifar MA, Naseri A (2014) Effective factors on the stability of oil-in-water emulsion based beverage: a review. J Food Qual Hazards Control 1(3):67–71

    Google Scholar 

  24. Sarangapani C, Patange A, Bourke P, Keener K, Cullen P (2018) Recent advances in the application of cold plasma technology in foods. Annu Rev Food Sci Technol 9:609–629

    CAS  PubMed  Google Scholar 

  25. Chutia H, Kalita D, Mahanta CL, Ojah N, Choudhury AJ (2019) Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. Lwt 101:625–629

    CAS  Google Scholar 

  26. Segat A, Misra N, Cullen P, Innocente N (2016) Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process 98:181–188

    CAS  Google Scholar 

  27. Zhang H, Xu Z, Shen J, Li X, Ding L, Ma J, Lan Y, Xia W, Cheng C, Sun Q (2015) Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci Rep 5:10031

    PubMed  PubMed Central  Google Scholar 

  28. Tolouie H, Mohammadifar MA, Ghomi H, Yaghoubi AS, Hashemi M (2018) The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol 47:346–352

    CAS  Google Scholar 

  29. Ekezie F-GC, Cheng J-H, Sun D-W (2018) Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends Food Sci Technol 74:12–25

    Google Scholar 

  30. Surowsky B, Fischer A, Schlueter O, Knorr D (2013) Cold plasma effects on enzyme activity in a model food system. Innov Food Sci Emerg Technol 19:146–152

    CAS  Google Scholar 

  31. Meinlschmidt P, Ueberham E, Lehmann J, Reineke K, Schlüter O, Schweiggert-Weisz U, Eisner P (2016) The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innov Food Sci Emerg Technol 38:374–383

    CAS  Google Scholar 

  32. Alves Filho EG, Silva LMA, Oiram Filho F, Rodrigues S, Fernandes FA, Gallão MI, Mattison CP, de Brito ES (2019) Cold plasma processing effect on cashew nuts composition and allergenicity. Food Res Int 125:108621

    CAS  PubMed  Google Scholar 

  33. Bahrami R, Zibaei R, Hashami Z, Hasanvand S, Garavand F, Rouhi M, Jafari SM, Mohammadi R (2020) Modification and improvement of biodegradable packaging films by cold plasma: a critical review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1848790

    Article  PubMed  Google Scholar 

  34. Sharma S, Singh R (2020) Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends Food Sci Technol 102:30–36

    CAS  Google Scholar 

  35. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma: a tool for decontamination and disinfection. Biotechnol Adv 33(6):1108–1119

    CAS  PubMed  Google Scholar 

  36. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von dem Hagen T, Weltmann K (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44(1):013002

    Google Scholar 

  37. Misra N, Pankaj S, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47

    CAS  Google Scholar 

  38. Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J Phys D Appl Phys 41(19):194008

    Google Scholar 

  39. Won MY, Lee SJ, Min SC (2017) Mandarin preservation by microwave-powered cold plasma treatment. Innov Food Sci Emerg Technol 39:25–32

    CAS  Google Scholar 

  40. Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Processes Polym 7(3–4):237–243

    CAS  Google Scholar 

  41. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O (2015) Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–229

    CAS  Google Scholar 

  42. Muhammad AI, Liao X, Cullen PJ, Liu D, Xiang Q, Wang J, Chen S, Ye X, Ding T (2018) Effects of nonthermal plasma technology on functional food components. Compr Rev Food Sci Food Saf 17(5):1379–1394

    CAS  PubMed  Google Scholar 

  43. Mirmoghtadaie L, Aliabadi SS, Hosseini SM (2016) Recent approaches in physical modification of protein functionality. Food Chem 199:619–627

    CAS  PubMed  Google Scholar 

  44. Schlegel K, Leidigkeit A, Eisner P, Schweiggert-Weisz U (2019) Technofunctional and sensory properties of fermented lupin protein isolates. Foods 8:e678

    PubMed  Google Scholar 

  45. Mirmoghtadaie L, Shojaee Aliabadi S, Hosseini SM (2016) Recent approaches in physical modification of protein functionality. Food Chem 199:619–627. https://doi.org/10.1016/j.foodchem.2015.12.067

    Article  CAS  PubMed  Google Scholar 

  46. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    PubMed  Google Scholar 

  47. McSweeney PL, O’Mahony JA (2015) Advanced dairy chemistry: volume 1B: proteins: applied aspects. Springer, Berlin

    Google Scholar 

  48. Mäkinen OE, Sozer N, Ercili-Cura D, Poutanen K (2017) Chapter 6-Protein from oat: structure, processes, functionality, and nutrition. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic Press, San Diego, pp 105–119

    Google Scholar 

  49. Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci Technol 64:1–12

    CAS  Google Scholar 

  50. Misra N, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen P (2015) Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll 44:115–121

    CAS  Google Scholar 

  51. Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol 77:131–142

    CAS  Google Scholar 

  52. Nyaisaba BM, Miao W, Hatab S, Siloam A, Chen M, Deng S (2019) Effects of cold atmospheric plasma on squid proteases and gel properties of protein concentrate from squid (Argentinus ilex) mantle. Food Chem 291:68–76

    CAS  PubMed  Google Scholar 

  53. Sharifian A, Soltanizadeh N, Abbaszadeh R (2019) Effects of dielectric barrier discharge plasma on the physicochemical and functional properties of myofibrillar proteins. Innov Food Sci Emerg Technol 54:1–8

    CAS  Google Scholar 

  54. Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID (2016) Cold plasma: a new technology to modify wheat flour functionality. Food Chem 202:247–253. https://doi.org/10.1016/j.foodchem.2016.01.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin D, Zhang Q, Xiao L, Huang Y, Yang Z, Wu Z, Tu Z, Qin W, Chen H, Wu D (2020) Effects of ultrasound on functional properties, structure and glycation properties of proteins: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1778632

    Article  PubMed  Google Scholar 

  56. Chen X, McClements DJ, Zhu Y, Chen Y, Zou L, Liu W, Cheng C, Fu D, Liu C (2018) Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Res Int 114:30–37

    CAS  PubMed  Google Scholar 

  57. Hu H, Wu J, Li-Chan EC, Zhu L, Zhang F, Xu X, Fan G, Wang L, Huang X, Pan S (2013) Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll 30(2):647–655

    CAS  Google Scholar 

  58. Hwang SO, Kim JM, Shin M (2017) Effects of hydrocolloids on the quality of protein and transglutaminase added gluten-free rice bread. Korean J Food Cook Sci 33(2):198–208

    CAS  Google Scholar 

  59. Mollakhalili Meybodi N, Mohammadifar M (2014) Effect of irradiated gum Tragacanth on rheological properties of oil in water emulsion. J Food Qual Hazards Control 1(2):46–51

    Google Scholar 

  60. Ji H, Han F, Peng S, Yu J, Li L, Liu Y, Chen Y, Li S, Chen Y (2019) Behavioral solubilization of peanut protein isolate by atmospheric pressure cold plasma (ACP) treatment. Food Bioprocess Technol 12(12):2018–2027. https://doi.org/10.1007/s11947-019-02357-0

    Article  CAS  Google Scholar 

  61. Coutinho NM, Silveira MR, Pimentel TC, Freitas MQ, Moraes J, Fernandes LM, Silva MC, Raices RSL, Ranadheera CS, Borges FO, Neto RPC, Tavares MIB, Fernandes FAN, Nazzaro F, Rodrigues S, Cruz AG (2019) Chocolate milk drink processed by cold plasma technology: physical characteristics, thermal behavior and microstructure. LWT 102:324–329. https://doi.org/10.1016/j.lwt.2018.12.055

    Article  CAS  Google Scholar 

  62. Mehr HM, Koocheki A (2020) Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocoll 106:105899

    Google Scholar 

  63. Chang C, Tu S, Ghosh S, Nickerson M (2015) Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Res Int 77:360–367

    CAS  Google Scholar 

  64. Tang C-H, Sun X (2010) Physicochemical and structural properties of 8S and/or 11S globulins from mungbean [Vigna radiata (L.) Wilczek] with various polypeptide constituents. J Agric Food Chem 58(10):6395–6402

    CAS  PubMed  Google Scholar 

  65. Panpipat W, Chaijan M (2020) Effect of Atmospheric Pressure Cold Plasma on Biophysical Properties and Aggregation of Natural Actomyosin from Threadfin Bream (Nemipterus bleekeri). Food Bioprocess Technol 13:1–9

    Google Scholar 

  66. Zhang Q, Cheng Z, Zhang J, Nasiru MM, Wang Y, Fu L (2021) Atmospheric cold plasma treatment of soybean protein isolate: insights into the structural, physicochemical, and allergenic characteristics. J Food Sci 86(1):68–77

    CAS  PubMed  Google Scholar 

  67. Held S, Tyl CE, Annor GA (2019) Effect of radio frequency cold plasma treatment on intermediate wheatgrass (Thinopyrum intermedium) flour and dough properties in comparison to hard and soft wheat (Triticum aestivum L.). J Food Qual. https://doi.org/10.1155/2019/1085172

    Article  Google Scholar 

  68. Park JH, Kim M, Shiratani M, Cho AE, Choi EH, Attri P (2016) Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet. Sci Rep 6:35883

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang W, Xiao S, Ahn DU (2013) Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci Nutr 53(11):1191–1201

    CAS  PubMed  Google Scholar 

  70. Dong S, Gao A, Xu H, Chen Y (2017) Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders. Food Bioprocess Technol 10(3):434–444

    CAS  Google Scholar 

  71. Jiang Y-H, Cheng J-H, Sun D-W (2020) Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dickinson E (2003) Interfacial, emulsifying and foaming properties of milk proteins. Advanced dairy chemistry: 1 proteins. Springer, Berlin, pp 1229–1260

    Google Scholar 

  73. Damodaran S (2008) Amino acids, peptides and proteins. CRC Press, Boca Raton

    Google Scholar 

  74. Dickinson E, Pawlowsky K (1998) Influence of κ-carrageenan on the properties of a protein-stabilized emulsion. Food Hydrocoll 12(4):417–423

    CAS  Google Scholar 

  75. Afraz MT, Khan MR, Roobab U, Noranizan MA, Tiwari BK, Rashid MT, Inam-ur-Raheem M, Hashemi SMB, Aadil RM (2020) Impact of novel processing techniques on the functional properties of egg products and derivatives: a review. J Food Process Eng 43(12):e13568

    CAS  Google Scholar 

  76. Sharma S, Rk S (2020) Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends Food Sci Technol 102:30–36. https://doi.org/10.1016/j.tifs.2020.05.013

    Article  CAS  Google Scholar 

  77. Gould J, Wolf B (2018) Interfacial and emulsifying properties of mealworm protein at the oil/water interface. Food Hydrocolloids 77:57–65

    CAS  Google Scholar 

  78. McCarthy NA, Kennedy D, Hogan SA, Kelly PM, Thapa K, Murphy KM, Fenelon MA (2016) Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication. Food Res Int 89:415–421

    CAS  PubMed  Google Scholar 

  79. Mohammadzadeh H, Koocheki A, Kadkhodaee R, Razavi SM (2013) Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Res Int 53(1):312–318

    CAS  Google Scholar 

  80. Loveday SM (2019) Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annu Rev Food Sci Technol 10:311–339

    CAS  PubMed  Google Scholar 

  81. Rouimi S, Schorsch C, Valentini C, Vaslin S (2005) Foam stability and interfacial properties of milk protein–surfactant systems. Food Hydrocolloids 19(3):467–478

    CAS  Google Scholar 

  82. Jiang Y-H, Cheng J-H, Sun D-W (2020) Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci Technol 98:129–139. https://doi.org/10.1016/j.tifs.2020.02.009

    Article  CAS  Google Scholar 

  83. Duan X, Li M, Shao J, Chen H, Xu X, Jin Z, Liu X (2018) Effect of oxidative modification on structural and foaming properties of egg white protein. Food Hydrocoll 75:223–228

    CAS  Google Scholar 

  84. Xi Z, Liu W, McClements DJ, Zou L (2019) Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content. Food Chem 291:22–29. https://doi.org/10.1016/j.foodchem.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  85. Davidov-Pardo G, Joye IJ, McClements DJ (2015) Food-grade protein-based nanoparticles and microparticles for bioactive delivery: fabrication, characterization and, utilization. Advances in protein chemistry and structural biology. Elsevier, Amsterdam, pp 293–325

    Google Scholar 

  86. Le XT, Rioux L-E, Turgeon SL (2017) Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Coll Interface Sci 239:127–135

    CAS  Google Scholar 

  87. Ooms N, Jansens KJ, Pareyt B, Reyniers S, Brijs K, Delcour JA (2018) The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb. Food Chem 242:68–74

    CAS  PubMed  Google Scholar 

  88. Chaple S, Sarangapani C, Jones J, Carey E, Causeret L, Genson A, Duffy B, Bourke P (2020) Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov Food Sci Emerg Technol 66:102529

    CAS  Google Scholar 

  89. Bußler S, Steins V, Ehlbeck J, Schlüter O (2015) Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca.’ J Food Eng 167:166–174

    Google Scholar 

  90. Bußler S, Rumpold BA, Fröhling A, Jander E, Rawel HM, Schlüter OK (2016) Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: impact on microbial load and quality attributes in comparison to dry heat treatment. Innov Food Sci Emerg Technol 36:277–286

    Google Scholar 

  91. Miao W, Nyaisaba BM, Koddy JK, Chen M, Hatab S, Deng S (2020) Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma). Int J Food Sci Technol 55(2):517–525. https://doi.org/10.1111/ijfs.14295

    Article  CAS  Google Scholar 

  92. Ji H, Tang X, Li L, Peng S, Gao C, Chen Y (2020) Improved physicochemical properties of peanut protein isolate glycated by atmospheric pressure cold plasma (ACP) treatment. Food Hydrocoll 109:106124. https://doi.org/10.1016/j.foodhyd.2020.106124

    Article  CAS  Google Scholar 

  93. Boye J, Ma C-Y, Ismail A, Harwalkar V, Kalab M (1997) Molecular and microstructural studies of thermal denaturation and gelation of β-lactoglobulins A and B. J Agric Food Chem 45(5):1608–1618

    CAS  Google Scholar 

  94. Ji H, Dong S, Han F, Li Y, Chen G, Li L, Chen Y (2018) Effects of dielectric barrier discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein. Food Bioprocess Technol 11(2):344–354

    CAS  Google Scholar 

  95. Miao W, Nyaisaba BM, Koddy JK, Chen M, Hatab S, Deng S (2019) Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma). Int J Food Sci Technol 55(2):517–525. https://doi.org/10.1111/ijfs.14295

    Article  CAS  Google Scholar 

  96. Dong S, Wang J-m, Cheng L-m, Lu Y-l, Li S-h, Chen Y (2017) Behavior of zein in aqueous ethanol under atmospheric pressure cold plasma treatment. J Agric Food Chem 65(34):7352–7360

    CAS  PubMed  Google Scholar 

  97. Yang R, Liu Y, Meng D, Wang D, Blanchard CL, Zhou Z (2018) Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin. Food Chem 264:41–48

    CAS  PubMed  Google Scholar 

  98. Alipour M, Sarafraz M, Chavoshi H, Bay A, Nematollahi A, Sadani M, Fakhri Y, Vasseghian Y, Khaneghah AM (2020) The concentration and probabilistic risk assessment of potentially toxic elements in fillets of silver pomfret (Pampus argenteus): a global systematic review and meta-analysis. J Environ Sci 100:167–180

    Google Scholar 

  99. Jin J, Ohanenye IC, Udenigwe CC (2020) Buckwheat proteins: functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Criti Rev Food Sci Nutr 17:82–103

    Google Scholar 

  100. Mattila PH, Pihlava J-M, Hellström J, Nurmi M, Eurola M, Mäkinen S, Jalava T, Pihlanto A (2018) Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qual Saf 2(4):213–219

    CAS  Google Scholar 

  101. Chen D, Peng P, Zhou N, Cheng Y, Min M, Ma Y, Mao Q, Chen P, Chen C, Ruan R (2019) Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem 290:270–276

    CAS  PubMed  Google Scholar 

  102. Pal P, Kaur P, Singh N, Kaur A, Misra N, Tiwari BK, Cullen PJ, Virdi AS (2016) Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Res Int 81:50–57

    CAS  Google Scholar 

  103. Zhou X, Zhou J, Wang Y, Peng B, Zhu J, Yang L, Wang Y (2015) Elevated tropospheric ozone increased grain protein and amino acid content of a hybrid rice without manipulation by planting density. J Sci Food Agric 95(1):72–78

    CAS  PubMed  Google Scholar 

  104. Kotiaho T, Eberlin MN, Vainiotalo P, Kostiainen R (2000) Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J Am Soc Mass Spectrom 11(6):526–535

    CAS  PubMed  Google Scholar 

  105. Gilani GS, Xiao CW, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108(S2):S315–S332

    Google Scholar 

  106. Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88(3):967–987

    CAS  PubMed  Google Scholar 

  107. Nwaru B, Hickstein L, Panesar S, Roberts G, Muraro A, Sheikh A, Allergy EF, Group AG (2014) Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 69(8):992–1007

    CAS  PubMed  Google Scholar 

  108. Surowsky B, Froehling A, Gottschalk N, Schlueter O, Knorr D (2014) Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms. Int J Food Microbiol 174:63–71

    CAS  PubMed  Google Scholar 

  109. Xiao S (2020) Effect of dietary maillard reaction products on insulin sensitivity, metabolic inflammation and intestinal inflammation in mice fed the total western diet. MSc thesis, Utah State University, Logan, Utah

  110. Sadhu S, Thirumdas R, Deshmukh RR, Annapure US (2017) Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT 78:97–104. https://doi.org/10.1016/j.lwt.2016.12.026

    Article  CAS  Google Scholar 

  111. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5(1):13033. https://doi.org/10.1038/srep13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu J-J, Ji H, Chen Y, Zhang Y-F, Zheng X-C, Li S-H, Chen Y (2020) Analysis of the glycosylation products of peanut protein and lactose by cold plasma treatment: solubility and structural characteristics. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.04.255

    Article  PubMed  Google Scholar 

  113. Chen Z, Lin L, Cheng X, Gjika E, Keidar M (2016) Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Processes Polym 13(12):1151–1156

    CAS  Google Scholar 

  114. Xu D, Liu D, Wang B, Chen C, Chen Z, Li D, Yang Y, Chen H, Kong MG (2015) In situ OH generation from O2− and H2O2 plays a critical role in plasma-induced cell death. PLoS ONE 10(6):e0128205

    PubMed  PubMed Central  Google Scholar 

  115. Keidar M (2015) Plasma for cancer treatment. Plasma Sources Sci Technol 24(3):033001

    Google Scholar 

  116. Kim H-J, Sung N-Y, Yong HI, Kim H, Lim Y, Ko KH, Yun C-H, Jo C (2016) Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water. Korean J Food Sci Anim Resour 36(4):494

    PubMed  PubMed Central  Google Scholar 

  117. Han SH, Suh HJ, Hong KB, Kim SY, Min SC (2016) Oral toxicity of cold plasma-treated edible films for food coating. J Food Sci 81(12):T3052–T3057

    CAS  PubMed  Google Scholar 

  118. Los A, Ziuzina D, Van Cleynenbreugel R, Boehm D, Bourke P (2020) Assessing the biological safety of atmospheric cold plasma treated wheat using cell and insect models. Foods 9(7):898

    CAS  PubMed Central  Google Scholar 

  119. Jo K, Lee S, Yong HI, Choi Y-S, Baek KH, Jo C, Jung S (2020) No mutagenicity and oral toxicity of winter mushroom powder treated with atmospheric non-thermal plasma. Food Chem 338:127826

    PubMed  Google Scholar 

  120. Lee H, Yong HI, Kim H-J, Choe W, Yoo SJ, Jang EJ, Jo C (2016) Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci Biotechnol 25(4):1189–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sonawane SK, Patil S (2020) Non-thermal plasma: an advanced technology for food industry. Food Sci Technol Int. https://doi.org/10.1002/ppap.201700085

    Article  PubMed  Google Scholar 

  122. Chen G, Dong S, Chen Y, Gao Y, Zhang Z, Li S, Chen Y (2020) Complex coacervation of zein-chitosan via atmospheric cold plasma treatment: improvement of encapsulation efficiency and dispersion stability. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.105943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amene Nematollahi or Nasim Khorshidian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Financial interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A. et al. Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 247, 1579–1594 (2021). https://doi.org/10.1007/s00217-021-03750-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03750-w

Keywords

Navigation