Skip to main content
Log in

Applications of nanotechnology in the winemaking process

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In recent times, nanotechnology is expanding its field of application to very diverse areas. One of the most outstanding uses of nanotechnology in oenology is the incorporation of nanoparticles to sensors of different nature (electrochemical, biological, amperometric or fluorimetric) to improve the analysis of wine components such as polyphenols, organic acids, biogenic amines or sulphur dioxide. An improvement in the performance of the electrodes, increasing their sensitivity, accuracy and selectivity, together with shorter response times and less pre-treatment of the sample are some of the main advantages of using nanoparticles in detection devices. There are many nanomaterials (e.g. carbon nanodots or nanotubes, gold, silver, zinc oxide, iron oxide nanoparticles or nanocomposites) with interesting and varied properties that allow making specific detections and measurements of compounds while developing simpler analysis methodologies. In addition, other utilities of nanotechnology such as the development of electronic tongues, the nano-liquid chromatography, the antimicrobial power of certain nanoparticles and nanocomposites, the removal of yeast lees in sparkling wines through the attachment of magnetic nanoparticles, the usefulness of mesoporous silica nanomaterials as clarifying agents and the possibility of creating molecularly imprinted templates for the selective extraction of specific compounds from wine have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhushan B (2017) Springer handbook of nanotechnology. Springer, Berlin

    Book  Google Scholar 

  2. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  PubMed  Google Scholar 

  3. Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12:219–226

    Article  Google Scholar 

  4. Roco MC (2001) International strategy for nanotechnology research. J Nanoparticle Res 3:353–360

    Article  Google Scholar 

  5. Morata A, Loira I, Suárez-Lepe JA (2016) Nanotechnology and wine. Novel approaches of nanotechnology in food. Elsevier, Amsterdam, pp 165–199

    Google Scholar 

  6. Chellaram C, Murugaboopathi G, John AA et al (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113

    Article  CAS  Google Scholar 

  7. Bajpai VK, Kamle M, Shukla S et al (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26:1201–1214

    Article  CAS  PubMed  Google Scholar 

  8. Mannino S, Scampicchio M (2007) Nanotechnology and food quality control. Vet Res Commun 31:149–151

    Article  PubMed  Google Scholar 

  9. Scampicchio M, Wang J, Blasco AJ et al (2006) Nanoparticle-based assays of antioxidant activity. Anal Chem 78:2060–2063

    Article  CAS  PubMed  Google Scholar 

  10. Monge M, Moreno-Arribas MV (2016) Applications of nanotechnology in wine production and quality and safety control. In: Wine Safety, Consumer Preference, and Human Health. Springer, pp 51–69

  11. Riul A, Malmegrim RR, Fonseca FJ, Mattoso LHC (2003) An artificial taste sensor based on conducting polymers. Biosens Bioelectron 18:1365–1369

    Article  CAS  Google Scholar 

  12. Arribas AS, Martínez-Fernández M, Moreno M et al (2013) Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes. Food Chem 136:1183–1192

    Article  PubMed  CAS  Google Scholar 

  13. Schneider M, Türke A, Fischer W-J, Kilmartin PA (2014) Determination of the wine preservative sulphur dioxide with cyclic voltammetry using inkjet printed electrodes. Food Chem 159:428–432

    Article  CAS  PubMed  Google Scholar 

  14. Sanz VC, Mena ML, González-Cortés A et al (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8

    Article  CAS  Google Scholar 

  15. Loaiza OA, Lamas-Ardisana PJ, Añorga L et al (2015) Graphitized carbon nanofiber–Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 101:58–65

    Article  CAS  PubMed  Google Scholar 

  16. Barthelmebs L, Hayat A, Limiadi AW et al (2011) Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sens Actuators B Chem 156:932–937

    Article  CAS  Google Scholar 

  17. Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta 132:252–257

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Hernandez C, Garcia-Cabezon C, Martin-Pedrosa F, Rodriguez-Mendez ML (2019) Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator. Food Chem 289:751–756. https://doi.org/10.1016/j.foodchem.2019.03.107

    Article  CAS  PubMed  Google Scholar 

  19. Curulli A, Di Carlo G, Ingo GM et al (2012) Chitosan stabilized gold nanoparticle-modified Au electrodes for the determination of polyphenol index in wines: a preliminary study. Electroanalysis 24:897–904

    Article  CAS  Google Scholar 

  20. Godoy-Navajas J, Aguilar-Caballos MP, Gómez-Hens A (2015) Automatic determination of polyphenols in wines using laccase and terbium oxide nanoparticles. Food Chem 166:29–34

    Article  CAS  PubMed  Google Scholar 

  21. Chawla S, Rawal R, Kumar D, Pundir CS (2012) Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. Anal Biochem 430:16–23

    Article  CAS  PubMed  Google Scholar 

  22. Zamfir L-G, Geana I, Bourigua S et al (2011) Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens Actuators B Chem 159:178–184

    Article  CAS  Google Scholar 

  23. Basozabal I, Guerreiro A, Gomez-Caballero A et al (2014) Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens Bioelectron 58:138–144

    Article  CAS  PubMed  Google Scholar 

  24. Karczmarczyk A, Reiner-Rozman C, Hageneder S et al (2016) Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR. Anal Chim Acta 937:143–150. https://doi.org/10.1016/j.aca.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  25. Jalalvand AR (2018) Fabrication of a novel and high-performance amperometric sensor for highly sensitive determination of ochratoxin A in juice samples. Talanta 188:225–231. https://doi.org/10.1016/j.talanta.2018.05.093

    Article  CAS  PubMed  Google Scholar 

  26. Karabiberoğlu ŞU, Ayan EM, Dursun Z (2013) Electroanalysis of caffeic acid in red wine and investigation of thermodynamic parameters using an Ag nanoparticles modified poly (thiophene) film glassy carbon electrode. Electroanalysis 25:1933–1945

    Article  CAS  Google Scholar 

  27. Borisova B, Villalonga ML, Arévalo-Villena M et al (2017) Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. Anal Bioanal Chem 409:5667–5674. https://doi.org/10.1007/s00216-017-0505-5

    Article  CAS  PubMed  Google Scholar 

  28. Monošík R, Ukropcová D, Streďanský M, Šturdík E (2012) Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine. Anal Biochem 421:256–261

    Article  PubMed  CAS  Google Scholar 

  29. Rawal R, Chawla S, Pundir CS (2012) An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Biosens Bioelectron 31:144–150

    Article  CAS  PubMed  Google Scholar 

  30. Lanzellotto C, Favero G, Antonelli ML et al (2014) Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications. Biosens Bioelectron 55:430–437

    Article  CAS  PubMed  Google Scholar 

  31. Medina-Plaza C, García-Cabezón C, García-Hernández C et al (2015) Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles. Anal Chim Acta 853:572–578

    Article  CAS  PubMed  Google Scholar 

  32. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput Electron Agric 50:1–14

    Article  CAS  Google Scholar 

  33. Chervet JP, Ursem M, Salzmann JP (1996) Instrumental requirements for nanoscale liquid chromatography. Anal Chem 68:1507–1512

    Article  CAS  PubMed  Google Scholar 

  34. Kwon SW (2004) Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 52:7258–7263

    Article  CAS  PubMed  Google Scholar 

  35. Hernández-Borges J, D’Orazio G, Aturki Z, Fanali S (2007) Nano-liquid chromatography analysis of dansylated biogenic amines in wines. J Chromatogr A 1147:192–199

    Article  PubMed  CAS  Google Scholar 

  36. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  37. Izquierdo-Cañas PM, García-Romero E, Huertas-Nebreda B, Gómez-Alonso S (2012) Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23:73–81

    Article  CAS  Google Scholar 

  38. OIV communication. Group of experts in wine microbiology. International Organization of Vine and Wine (2015) Must and wine treatment with kaolin silver complex. OENO-TECHNO 13–535 and 536-Paris

  39. García-Ruiz A, Crespo J, López-de-Luzuriaga JM et al (2015) Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control 50:613–619. https://doi.org/10.1016/J.FOODCONT.2014.09.035

    Article  Google Scholar 

  40. Gil-Sánchez I, Monge M, Miralles B et al (2019) Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innov Food Sci Technol Spanish Natl Res Counc 51:64–72

    Google Scholar 

  41. Tankhiwale R, Bajpai SK (2010) Silver-nanoparticle-loaded chitosan lactate films with fair antibacterial properties. J Appl Polym Sci 115:1894–1900

    Article  CAS  Google Scholar 

  42. Cioffi N, Torsi L, Ditaranto N et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  43. Ren G, Hu D, Cheng EWC et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  44. Berovic M, Berlot M, Kralj S, Makovec D (2014) A new method for the rapid separation of magnetized yeast in sparkling wine. Biochem Eng J 88:77–84

    Article  CAS  Google Scholar 

  45. Dušak P, Benčina M, Turk M et al (2016) Application of magneto-responsive Oenococcus oeni for the malolactic fermentation in wine. Biochem Eng J 110:134–142. https://doi.org/10.1016/j.bej.2016.02.016

    Article  CAS  Google Scholar 

  46. Dumitriu GD, López de Lerma N, Luchian CE et al (2018) Study of the potential use of mesoporous nanomaterials as fining agent to prevent protein haze in white wines and its impact in major volatile aroma compounds and polyols. Food Chem 240:751–758. https://doi.org/10.1016/j.foodchem.2017.07.163

    Article  CAS  PubMed  Google Scholar 

  47. Mierczynska-Vasilev A, Boyer P, Vasilev K, Smith PA (2017) A novel technology for the rapid, selective, magnetic removal of pathogenesis-related proteins from wines. Food Chem 232:508–514. https://doi.org/10.1016/j.foodchem.2017.04.050

    Article  CAS  PubMed  Google Scholar 

  48. Mierczynska-Vasilev A, Mierczynski P, Maniukiewicz W et al (2019) Magnetic separation technology: functional group efficiency in the removal of haze-forming proteins from wines. Food Chem 275:154–160. https://doi.org/10.1016/j.foodchem.2018.09.046

    Article  CAS  PubMed  Google Scholar 

  49. Pinzaru SC, Magdas DA (2018) Ag nanoparticles meet wines: SERS for wine analysis. Food Anal Methods 11:892–900. https://doi.org/10.1007/s12161-017-1056-2

    Article  Google Scholar 

  50. Liang C, Jeffery DW, Taylor DK (2018) Preparation of magnetic polymers for the elimination of 3-isobutyl-2-methoxypyrazine from wine. Molecules. https://doi.org/10.3390/molecules23051140

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smolkova B, El Yamani N, Collins AR et al (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73

    Article  CAS  PubMed  Google Scholar 

  52. Gaillet S, Rouanet J-M (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63

    Article  CAS  PubMed  Google Scholar 

  53. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267

    Article  CAS  PubMed  Google Scholar 

  54. Linsinger TPJ, Chaudhry Q, Dehalu V et al (2013) Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem 138:1959–1966

    Article  CAS  PubMed  Google Scholar 

  55. Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  56. Hardy A, Benford D, Halldorsson T et al (2018) Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J 16(7):1–95. https://doi.org/10.5327/j.efsa.2018.5327

    Article  Google Scholar 

  57. Khan M, Shaik MR, Adil SF et al (2018) Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalt Trans 47:11988–12010. https://doi.org/10.1039/C8DT01152D

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Loira.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loira, I., Morata, A., Escott, C. et al. Applications of nanotechnology in the winemaking process. Eur Food Res Technol 246, 1533–1541 (2020). https://doi.org/10.1007/s00217-020-03519-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03519-7

Keywords

Navigation