Skip to main content
Log in

A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The increasing interest in cannabinoids, both in hemp plant material and hemp-derived products, has sparked a renewed interest in cannabinoid analysis, mostly by liquid chromatography. A simple isocratic HPLC method for analysing cannabinoids in hemp (Cannabis sativa and Cannabis indica) plant material and its extracts has been developed. It was demonstrated that separation of chromatographically critical cannabinoids can be successfully done by a careful selection of a few parameters like common mobile phase modifiers and column temperature. Column temperature proved to be very critical, even under isocratic elution. Analyses are performed within 8.5 min. The use of 275 nm detection wavelength provided about an order of magnitude better sensitivity compared to the established 228 nm wavelength normally used in cannabinoid analysis. The method was validated for 11 major cannabinoids present in Cannabis samples and products, namely: cannabidivarine, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, tetrahydrocannabivarin, cannabinol, Δ9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, tetrahydrocannabinolic acid, and cannabichromene. The assessed limits of detection and the limits of quantitation range from 7 to 205 ng/mL and from 23 to 684 ng/mL, respectively. Being isocratic, with minimum adaptation, the method can be applied for screening work using a shorter column or for a better performing analysis by employing a longer column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gambaro VE, Froldi R, Saligari E, Dell’Acqua L, Salomone E, Roses OE (1995) Acta Toxicol Argent 3:11–13

    Google Scholar 

  2. Gibson CR, Williams RD, Browder RO (1998) J Anal Toxicol 22:179

    Article  CAS  Google Scholar 

  3. Ross SA, Mehmedic Z, Murphy TP, Elsohly MA (2000) J Anal Toxicol 24:715–717

    Article  CAS  Google Scholar 

  4. Raharjo TJ, Verpoorte R (2004) Phytochem Anal 15:79–94

    Article  CAS  Google Scholar 

  5. Pellegrini M, Marchei E, Pacifici R, Pichini S (2005) J Pharm Biomed Anal 36:939–946

    Article  CAS  Google Scholar 

  6. Gambaro V, Dell’Acqua L, Fare F, Froldi R, Saligari E, Tassoni G (2002) Anal Chim Acta 468:245–254

    Article  CAS  Google Scholar 

  7. Cardenia V, Toschi TG, Scappini S, Rubino RC, Rodriguez-Estrada MT (2018) J Food Drug Anal 26:1283–1292

    Article  CAS  Google Scholar 

  8. United Nations Office on Drugs and Crime (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations Publications, New York

    Google Scholar 

  9. Wang M, Wang Y-H, Avula B, Radwan MM, Wanas AS, van Antwerp J, Parcher JF, ElSohly MA, Khan IA (2016) Cannabis Cannabinoid Res 1:262–271

    Article  CAS  Google Scholar 

  10. Dussy FE, Hamberg C, Luginbühl M, Schwerzmann T, Briellmann TA (2005) Forensic Sci Int 149:3–10

    Article  CAS  Google Scholar 

  11. Kemp PM, Abukhalaf IK, Manno JE, Manno BR, Alford DD, Abusada GA (1995) J Anal Toxicol 19:285–291

    Article  CAS  Google Scholar 

  12. Steinmeyer S, Bregel D, Warth S, Kraemer T, Moeller MR (2002) J Chromatogr B 772:239–248

    Article  CAS  Google Scholar 

  13. Leghissa A, Hildenbrand ZL, Foss FW Jr, Schug KA (2017) J Sep Sci 41:459–468

    Article  Google Scholar 

  14. Pacifico D, Miselli F, Carboni A, Moschella A, Mandolino G (2007) Euphytica 160:231–240

    Article  Google Scholar 

  15. Zuk-Golaszewska K, Golaszewski J (2018) J Elem 23:971–984

    Google Scholar 

  16. Burstein SH (2014) Bioorg Med Chem 22:2830–2843

    Article  CAS  Google Scholar 

  17. Maurya N, Velmurugan BK (2018) Chem Biol Interact 293:77–88

    Article  CAS  Google Scholar 

  18. Izzo AA, Capasso R, Aviello G, Borrelli F, Romano B, Piscitelli F, Gallo L, Capasso F, Orlando P, Di Marzo V (2012) Br J Pharmacol 166:1444–1460

    Article  CAS  Google Scholar 

  19. Brierley DI, Samuels J, Duncan M, Whalley BJ, Williams CM (2016) Psychopharmacology 233:243–254

    Article  CAS  Google Scholar 

  20. Velasco G, Hernández-Tiedra S, Dávila D, Lorente M (2016) Prog Neuro-Psychopharmacol Biol Psychiatry 64:259–266

    Article  CAS  Google Scholar 

  21. Takeda S, Okajima S, Miyoshi H, Yoshida K, Okamoto Y, Okada T, Amamoto T, Watanabe K, Omiecinski CJ, Aramaki H (2012) Toxicol Lett 214:314–319

    Article  CAS  Google Scholar 

  22. De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) J Chromatogr B 877:4115–4124

    Article  Google Scholar 

  23. Aizpurua-Olaizola O, Omar J, Navarro P, Olivares M, Etxebarria N, Usobiaga A (2014) Anal Bioanal Chem 406:7549–7560

    Article  CAS  Google Scholar 

  24. Zgair A, Wong JCM, Sabri A, Fischer PM, Barrett DA, Constantinescu CS, Gershkovich P (2015) J Pharm Biomed Anal 114:145–151

    Article  CAS  Google Scholar 

  25. Gul W, Gul SW, Radwan MM, Wanas AS, Mehmedic Z, Khan II, Sharaf MH, ElSohly MA (2015) J AOAC Int 98:1523–1528

    Article  CAS  Google Scholar 

  26. Giese MW, Lewis MA, Giese L, Smith KM (2015) J AOAC Int 98:1503–1522

    Article  CAS  Google Scholar 

  27. Citti C, Ciccarella G, Braghiroli D, Parenti C, Vandelli MA, Cannazza G (2016) J Pharm Biomed Anal 128:201–209

    Article  CAS  Google Scholar 

  28. Patel B, Wene D, Fan Z (2017) J Pharm Biomed Anal 146:15–23

    Article  CAS  Google Scholar 

  29. Ciolino LA, Ranieri TL, Taylor AM (2018) Forensic Sci Int 298:438–447

    Article  Google Scholar 

  30. Mudge EM, Murch SJ, Brown PN (2017) Anal Bioanal Chem 409:3153–3163

    Article  CAS  Google Scholar 

  31. Cannabinoids for potency testing in two methods with alternate elution orders by LC-UV. https://www.phenomenex.com/ViewDocument/?id=12+cannabinoids+for+potency+testing+in+two+methods+with+alternate+elution+orders+by+lc-uv+(tn-1225). Accessed 21 Jan 2019

  32. Cannabinoids on raptor ARC-18 1.8 μm by LC-UV. https://www.restek.com/chromatogram/view/LC_GN0579/ARC-18. Accessed 21 Jan 2019

  33. Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and mass selective detection. https://www.agilent.com/cs/library/applications/5991-8313EN_Cannabis_AppNote.pdf. Accessed 21 Jan 2019

  34. Cannabinoids by LC-MS/MS using Kinetex 2.6 μm Biphenyl LC Column. https://www.phenomenex.com/ViewDocument/?id=10+cannabinoids+by+lc-ms_ms+using+kinetex+2.6+%u03bcm+biphenyl+lc+column. Accessed 21 Jan 2019

  35. Eight cannabinoids by HPLC-UV. https://www.conflabs.com/wp-content/uploads/2018/03/EIght-Cannabinoids-by-HPLC-UV-v1.1.pdf. Accessed 21 Jan 2019

  36. Separation of 12 natural cannabinoids using a Kinetex® Polar C18 column under methanol and acetonitrile conditions. https://www.phenomenex.com/ViewDocument/?id=separation+of+12+natural+cannabinoids+using+a+kinetex+polar+c18+column+under+methanol+and+acetonitrile+conditions. Accessed 21 Jan 2019

  37. Neue UD (1997) In: Neue UD (ed) HPLC columns: theory, technology and practice. Wiley-VCH, New York, pp 351–379

    Google Scholar 

  38. Dolan JW (2002) J Chromatogr A 965:195–205

    Article  CAS  Google Scholar 

  39. Analysis of biologically active compounds: cannabinoids. http://www.uct-uit-cooperation.eu/docs/stranska_rafa_interactive_seminar.pdf. Accessed 25 Jan 2019

  40. Hazekamp A, Peltenburg A, Verpoorte R, Giroud C (2005) J Liq Chromatogr R T 28:2361–2382

    Article  CAS  Google Scholar 

  41. Ramsperger HC, Porter CW (1926) J Am Chem Soc 48:1267–1273

    Article  Google Scholar 

  42. Hillig KW, Mahlberg PG (2004) Am J Bot 91:966-975

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitja Križman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript is based on a contribution given at CHIMALI 2018, Italian Food Chemistry Congress, Camerino, September 24–27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Križman, M. A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur Food Res Technol 246, 315–322 (2020). https://doi.org/10.1007/s00217-019-03344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03344-7

Keywords

Navigation