Skip to main content
Log in

Comparisons of phenolic compounds, isoflavones, antioxidant capacity and oxidative enzymes in yellow and black soybeans seed coat and dehulled bean

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The total and individual phenolic profiles and their contribution to antioxidant capacities of seed coats and dehulled beans of black and yellow soybeans were investigated. In addition, lipoxygenase (LOX) and peroxidase (POD) activities were also determined. Black seed coats had the highest content of total phenols, flavonoids and anthocyanins, in addition the highest catechin and protocatechin contents. On the other hand, dehulled beans from yellow soybeans had the highest levels of ferulic and p-coumaric acid content, and free and bound isoflavone content. The LOX activity was concentrated in the dehulled beans of both black and yellow soybeans, while a high POD activity that can be attributed to a dominant gene EpEp was presented in seed coats of yellow soybean genotype Galeb. Due to the high concentration of phenols, the black seed coats from soybean genotypes Black Tokio and Cornaja had the highest ABTS·+-scavenging capacity (597.46 and 486.15 mmol Trolox Eq./kg d.m., respectively). The results suggest that the black seed coat as well as dehulled bean from yellow soybeans would potentially provide sources of natural antioxidants that may play a crucial role in human health protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hamilton-Reeves JM, Rebello SA, Thomas W, Slaton JW, Kurzer MS (2007) Isoflavone-rich soy protein isolate suppresses androgen receptor expression without altering estrogen receptor-beta expression or serum hormonal profiles in men at high risk of prostate cancer. J Nutr 137:1769–1775

    CAS  Google Scholar 

  2. Welty FK, Lee KS, Lew NS, Zhou JR (2007) Effect of soy nuts on blood pressure and lipid levels in hypertensive, prehypertensive, and normotensive postmenopausal women. Ann Intern Med 167:1060–1067

    Article  CAS  Google Scholar 

  3. Sakthivelu G, Akitha Devi MK, Giridhar P, Rajasekaran T, Ravishankar GA, Nikolova MT, Angelov GB, Todorova RM, Kosturkova GP (2008) Antioxidant activity of soybean seeds from India and Bulgaria. J Agric Food Chem 56:2090–2095

    Article  CAS  Google Scholar 

  4. Hendrich S, Wang GJ, Lin HK, Xu X, Twe BY, Wang HJ (1999) In: Papas AM (ed) Antioxidant status, diet, nutrition and health. CRC, Boca Raton, FL

    Google Scholar 

  5. Xiao CW (2008) Health effects of soy protein and isoflavones in humans. J Nutr 138:1244S–1249S

    CAS  Google Scholar 

  6. Cederroth CR, Zimmermann C, Nef S (2012) Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 355:192–200

    Article  CAS  Google Scholar 

  7. Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439S–450S

    CAS  Google Scholar 

  8. Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I (2001) Highly polymerized procyanidins in brown soybean seed coat with high radical-scavenging activity. J Agric Food Chem 49:5843–5847

    Article  CAS  Google Scholar 

  9. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K (2005) Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agric Food Chem 53:4578–4582

    Article  CAS  Google Scholar 

  10. Kim JM, Kim JS, Yoo H, Choung MG, Sung MK (2008) Effects of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J Agric Food Chem 56:8427–8433

    Article  CAS  Google Scholar 

  11. Kovinich N, Arnason JT, De Luca V, Miki B (2011) In: Gang DR (ed) The biological activity of phytochemicals. Springer, New York

    Google Scholar 

  12. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    CAS  Google Scholar 

  13. Serpen A, Gokmen V (2007) Effects of beta-carotene on soybean lipoxygenase activity: kinetic studies. Eur Food Res Technol 224:743–748

    Article  CAS  Google Scholar 

  14. Cumbee B, Hildebrand DF, Addo K (1997) Soybean flour lipoxygenase isozymes effects on wheat flour dough rheological and breadmaking properties. J Food Chem 62:281–284

    Article  CAS  Google Scholar 

  15. Hilhorst R, Dunnewind B, Orsel R, Stegeman P, van Vliet T, Gruppen H, Schols HA (1999) Baking performance, rheology, and chemical composition of wheat dough and gluten affected by xylanase and oxidative enzymes. J Food Sci 64:808–813

    Article  CAS  Google Scholar 

  16. Antoine C, Peyron S, Lullien-Pellerin V, Abecassis J, Rouau X (2004) Wheat bran tissue fractionation using biochemical markers. J Cereal Sci 39:387–393

    Article  CAS  Google Scholar 

  17. Serpen A, Gökmen V, Karagöz A, Köksel H (2008) Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56:7285–7292

    Article  CAS  Google Scholar 

  18. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

  19. Shao S, Duncan AM, Yang R, Marcone MF, Rajcan I, Tsao R (2011) Systematic evaluation of pre-HPLC sample processing methods on total and individual isoflavones in soybeans and soy products. Food Res Int 44:2425–2434

    Article  CAS  Google Scholar 

  20. Abdel-Aal E-SM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354

    Article  CAS  Google Scholar 

  21. Serpen A, Gökmen V, Pellegrini N, Fogliano V (2008) Direct measurement of the total antioxidant capacity of cereal products. J Cereal Sci 48:816–820

    Article  CAS  Google Scholar 

  22. Surrey K (1964) Spectrophotometric method for determination of lipoxidase activity. Plant Physiol 39:65–70

    Article  CAS  Google Scholar 

  23. Sheu SC, Chen AO (1991) Lipoxygenase as blanching index for frozen vegetable soybeans. J Food Sci 56:448–451

    Article  CAS  Google Scholar 

  24. Xu B, Chang SKC (2008) Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J Agric Food Chem 56:8365–8373

    Article  CAS  Google Scholar 

  25. Zhang RF, Zhang FX, Zhang MW, Wei ZC, Yang CY, Zhang Y, Tang XJ, Deng YY, Chi JW (2011) Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J Agric Food Chem 59:5935–5944

    Article  CAS  Google Scholar 

  26. Kim JA, Jung WS, Chun SC, Yu CY, Ma KH, Gwag JG, Chung IM (2006) A correlation between the level of phenolic compounds and the antioxidant capacity in cooked with rice and vegetable soybean (Glycine max L.) varieties. Eur Food Res Technol 224:259–270

    Article  CAS  Google Scholar 

  27. Kay CD (2006) Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev 19:137–146

    Article  CAS  Google Scholar 

  28. Lin P-Y, Lan H-S (2006) Bioactive compounds in legumes and their germinated products. J Agric Food Chem 54:3807–3814

    Article  CAS  Google Scholar 

  29. Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  30. Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J (1999) Isoflavones in retail and institutional soy foods. J Agric Food Chem 47:2697–2704

    Article  CAS  Google Scholar 

  31. Kim JA, Hong SB, Jung WS, Yu CY, Ma KH, Gwag JG, Chung IM (2007) Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked with rice and vegetable soybean (Glycine max L.) varieties. Food Chem 102:738–744

    Article  CAS  Google Scholar 

  32. Kim SR, Hong HD, Kim SS (1997) Some properties and contents of isoflavone in soybean and soybean foods. Korea Soybean Digest 16:35–46

    CAS  Google Scholar 

  33. Setchell KDR, Brown NM, Desai P, Zimmet-Nechemias L, Wolfe B, Jakate AS, Creutzinger V, Heubi JE (2003) Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by health women at physiologically typical dietary intakes. J Nutr 133:1027–1035

    CAS  Google Scholar 

  34. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  Google Scholar 

  35. van Erp-Baart MA, Brants HA, Kiely M, Mulligan A, Turrini A, Sermoneta C, Kilkkinen A, Valsta LM (2003) Isoflavone intake in four different European countries: the VENUS approach. Br J Nutr 89:S25–S30

    Google Scholar 

  36. Kim EH, Kim SH, Chung JI, Chi HY, Kim JA, Chung IM (2006) Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol 222:201–208

    Article  CAS  Google Scholar 

  37. Dabrowski KJ, Sosulski W (1984) Composition of free and hydrolyzable phenolic acids in defatted flours of ten oilseeds. J Agric Food Chem 32:128–130

    Article  CAS  Google Scholar 

  38. Vansteenkiste E, Babot C, Rouau X, Micard V (2004) Oxidative gelation of feruloylated arabinoxylans as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocolloids 8:557–564

    Article  Google Scholar 

  39. Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen Z-Y (2005) Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem 90:735–741

    Article  CAS  Google Scholar 

  40. Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycones. J Agric Food Chem 51:628–633

    Article  Google Scholar 

  41. Jakobek L, Seruga M, Seruga B, Novak I, Medvidovic-Kosanovic M (2009) Phenolic compound composition and antioxidant activity of fruits of Rubus and Prunus species from Croatia. Int J Food Sci Technol 44:860–868

    Article  CAS  Google Scholar 

  42. Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds biochemistry and functionality. J Med Food 6:291–299

    Article  CAS  Google Scholar 

  43. Gijzen M, van Huystee R, Buzzell RI (1993) Soybean seed coat peroxidase. A comparison of high-activity and low-activity genotypes. Plant Physiol 103:1061–1066

    CAS  Google Scholar 

  44. Hoover W (1979) Use of soy proteins in baked foods. J Am Oil Chem Soc 56:301–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science of the Republic of Serbia (Grants no. TR-31069).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vural Gökmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žilić, S., Akıllıoğlu, H.G., Serpen, A. et al. Comparisons of phenolic compounds, isoflavones, antioxidant capacity and oxidative enzymes in yellow and black soybeans seed coat and dehulled bean. Eur Food Res Technol 237, 409–418 (2013). https://doi.org/10.1007/s00217-013-2005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2005-y

Keywords

Navigation