Skip to main content
Log in

Using electricity as a tool in quality studies of Atlantic salmon

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In order to reveal what role anaerobe muscle activity has on the fillet quality in Atlantic salmon (Salmo salar), 18 rested fish were killed on site and immediately filleted. One fillet was used as control group while the other was electrically exercised using 10 V, 5 Hz pDC for 3 min. Fillet weight and muscle pH was measured before the fillets were wrapped in aluminum foil and stored on ice. After 7 days muscle pH, color, and weight was measured. Texture profile analysis (TPA) was estimated using a 20 mm cylindrical probe compressing either at 40, 60 or 80% into the fillet and the shear force was estimated by slicing standardized muscles samples with a blade. Results show that electrical stimulation forces the muscle to contract and the muscle pH to drop by 0.5 units, leading to higher drip loss and loss of color. Comparing the fillets in pairs (paired t test) strengthens evidence on drip loss and color loss, but revealed also softer texture. Optimum compression rate for detecting differences in salmon muscle is at 60% compression. We conclude that electrical stimulation is a powerful tool for simulating anaerobe muscle activity enabling comparative studies within the same individual, hence isolating the variation amongst individuals and the location of sampling. Furthermore electrical stimulation reduces the need for live animal experimentation in quality studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Morkore T, Rorvik KA (2001) Aquaculture 199(145):157

    Google Scholar 

  2. Roth B, Johansen SJS, Suontama J, Kiessling A, Leknes O, Guldberg B, Handeland S (2005) Aquaculture 250(830):840

    Google Scholar 

  3. Espe M, Ruohonen K, Bjornevik M, Froyland L, Nortvedt R, Kiessling A (2004) Aquaculture 240(489):504

    Google Scholar 

  4. Lavety J, Afolabi OA, Love RM (1988) Int J Food Sci Technol 23(23):30

    Google Scholar 

  5. Aksnes A, Gjerde B, Roald SO (1986) Aquaculture 53(7):20

    Google Scholar 

  6. Erikson U, Sigholt T, Rustad T, Einarsdottir IE, Jorgensen L (1999) Aquacult Int 7(101):115

    Google Scholar 

  7. Roth B, Moeller D, Veland JO, Imsland A, Slinde E (2002) J Food Sci 67(1462):1466

    Google Scholar 

  8. Roth B, Slinde E, Arildsen J (2006) Aquaculture 257(504):510

    Google Scholar 

  9. Kiessling A, Espe M, Ruohonen K, Morkore T (2004) Aquaculture 236(645):657

    Google Scholar 

  10. Olsen SH, Sorensen NK, Stonno SK, Elvevoll EO (2006) Aquaculture 258(462):469

    Google Scholar 

  11. Skjervold PO, Fjaera SO, Ostby PB, Einen O (2001) Aquaculture 192(265):280

    Google Scholar 

  12. Erikson U, Hultmann L, Steen JE (2006) Aquaculture 252(183):198

    Google Scholar 

  13. Erikson U, Sigholt T, Seland A (1997) Aquaculture 149(243):252

    Google Scholar 

  14. Roth B, Slinde E, Robb DHF (2006) Aquacult Res 37(799):804

    Google Scholar 

  15. Jerrett AR, Holland AJ (1998) J Food Sci 63(48):52

    Google Scholar 

  16. Norwegian Standard Association (1994)

  17. Hunter RS, Harold RW (1987) 2nd edn, 1:411

  18. Sigurgisladottir S, Hafsteinsson H, Jonsson A, Lie O, Nortvedt R, Thomassen M, Torrissen O (1999) J Food Sci 64(99):104

    Google Scholar 

  19. Bourne MC (1977) J Texture Stud 8(219):227

    Google Scholar 

  20. Proctor MRM, McLoughlin JV (1992) Proc R Ir Acad 92(53):59

    Google Scholar 

  21. Robb DHF, Kestin SC, Warriss PD (2000) Aquaculture 182(261):269

    Google Scholar 

  22. Hauck FR (1949) Trans Am Fish Soc 77(61):64

    Google Scholar 

  23. Sharber NG, Carothers SW, Sharber JP, House DA (1994) N Am J Fish Manage 14(340):346

    Google Scholar 

  24. Roth B, Imsland A, Moeller D, Slinde E (2003) N Am J Aquacult 65(8):13

    Google Scholar 

  25. Fletcher GC, Hallett IC, Jerrett AR, Holland AJ (1997) Food Sci Technol Lebensmittel Wiss Technol 30(246):252

    Google Scholar 

  26. Jerrett AR, Holland AJ, Cleaver SE (1998) J Food Sci 63(53):56

    Google Scholar 

  27. Jerrett AR, Stevens J, Holland AJ (1996) J Food Sc 61(527):532

    Google Scholar 

  28. Morkore T, Hansen AA, Unander E, Einen O (2002) J Food Sci 67(1933):1938

    Google Scholar 

  29. Olsson GB, Olsen RL, Ofstad R (2003) Lebenson Wiss Technol Food Sci Technol 36(125):133

    Google Scholar 

  30. Boggess TS, Heaton EK, Beuchat LR (1973) J Milk Food Technol 36(469):473

    Google Scholar 

  31. Azam K, Mackie IM, Smith J (1989) Int J Food Sci Technol 24(69):79

    Google Scholar 

  32. Marx H, Brunner B, Weinzierl W, Hoffmann R, Stolle A (1997) Z Lebn Unters Fors 204(282):286

    Google Scholar 

  33. Veland JO, Torrissen OJ (1999) J Sci Food Agric 79(1737):1746

    Google Scholar 

  34. Morkore T, Einen O (2003) J Food Sci 68(1492):1497

    Google Scholar 

  35. Schubring R (1999) Dtsch Lebensmitt Rundsch 95(373):386

    Google Scholar 

Download references

Acknowledgments

Stjernelaks A/S and Henrik Ceder are acknowledged for supporting our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, B., Øines, S., Rotabakk, B.T. et al. Using electricity as a tool in quality studies of Atlantic salmon. Eur Food Res Technol 227, 571–577 (2008). https://doi.org/10.1007/s00217-007-0758-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0758-x

Keywords

Navigation