Skip to main content
Log in

An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson’s disease patients

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The elucidation of disease pathogenesis can be achieved by analyzing the low-abundance phosphopeptides in organisms. Herein, we developed a novel and easy-to-prepare polymer-coated nanomaterial. By improving the hydrophilicity and spatial conformation of the material, we effectively enhanced the adsorption of phosphopeptides and demonstrated excellent enrichment properties. The material was able to successfully enrich the phosphopeptides in only 1 min. Meanwhile, the material has high selectivity (1:2000), good loading capacity (100 μg/mg), excellent sensitivity (0.5 fmol), and great acid and alkali resistance. In addition, the material was applied to real samples, and 70 phosphopeptides were enriched from the serum of Parkinson’s disease (PD) patients and 67 phosphopeptides were enriched from the serum of normal controls. Sequences Logo showed that PD is probably associated with threonine, glutamate, serine, and glutamine. Finally, gene ontology (GO) analysis was performed on phosphopeptides enriched in PD patients’ serum. The results showed that PD patients expressed abnormal expression of the cholesterol metabolic process and cell–matrix adhesion in the biological process (BP), endoplasmic reticulum and lipoprotein in the cellular component (CC), and heparin-binding, lipid-binding, and receptor-binding in the molecular function (MF) as compared with normal individuals. All the experiments indicate that the nanomaterials have great potential in proteomics studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu HM, Zheng HY, Miao AZ, Deng CH, Sun NR. Probing region-resolved heterogeneity of phosphoproteome in human lens by hybrid metal organic frameworks. Chin Chem Lett. 2023;34: 107716. https://doi.org/10.1016/j.cclet.2022.07.059.

    Article  CAS  Google Scholar 

  2. Zhang XY, Feng QS, Xie ZH, Xu FX, Yan YH, Ding CF. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem. 2022;414:7885–95. https://doi.org/10.1007/s00216-022-04323-w.

    Article  CAS  PubMed  Google Scholar 

  3. Wang B, Zhang XY, Wang BC, Feng QS, Luo YT, Wang WM, Ding CF, Yan YH. Ti4+ functionalized β-cyclodextrin covalent organic framework as a new immobilized metal ion affinity chromatography platform for selective capture of phosphorylated peptides and exosomes. Microchim Acta. 2023;190:299. https://doi.org/10.1007/s00604-023-05952-3.

    Article  CAS  Google Scholar 

  4. Xu ZX, Chen HL, Chu HM, Shen XZ, Deng CH, Sun NR, Wu H. Diagnosis and subtype classification on serum peptide fingerprints by mesoporous polydopamine with built-in metal-organic framework. Chin Chem Lett. 2023;34: 107829. https://doi.org/10.1016/j.cclet.2022.107829.

    Article  CAS  Google Scholar 

  5. Wang DN, Feng QS, Luo YT, Wang WM, Yan YH, Deng CH. Self-assembly of hydrazide-linked porous organic polymers rich in titanium for efficient enrichment of glycopeptides and phosphopeptides from human serum. Analyst. 2023;148:3392–402. https://doi.org/10.1039/d3an00709j.

    Article  CAS  PubMed  Google Scholar 

  6. Hua SW, Wang B, Ding CF, Yan YH. A novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes for specific capture of phosphopeptides and exosomes. Talanta. 2023;266: 125139. https://doi.org/10.1016/j.talanta.2023.125139.

    Article  CAS  PubMed  Google Scholar 

  7. Chen YJ, Chen HL, Yang CJ, Wu YL, Deng CH, Sun NR. Specific enrichment of urinary exosomes and exosomal glycopeptides by coefficient affinity of integrated l -cysteine and titania. Chin Chem Lett. 2023;34: 107352. https://doi.org/10.1016/j.cclet.2022.03.075.

    Article  CAS  Google Scholar 

  8. Wang BC, Yan YH, Ding CF. Metal organic frameworks as advanced adsorbent materials for separation and analysis of complex samples. J Chromatogr A. 2022;1671: 462971. https://doi.org/10.1016/j.chroma.2022.462971.

    Article  CAS  PubMed  Google Scholar 

  9. Wang BC, Xie ZH, Ding CF, Deng CH, Yan YH. Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. Trac-Trend Anal Chem. 2022;158: 116881. https://doi.org/10.1016/j.trac.2022.116881.

    Article  CAS  Google Scholar 

  10. Yan YH, Deng CH. Recent advances in nanomaterials for sample pre-treatment in phosphoproteomics research. Trac-Trend Anal Chem. 2019;120: 115655. https://doi.org/10.1016/j.trac.2019.115655.

    Article  CAS  Google Scholar 

  11. Wang B, Wang BC, Feng QS, Fang X, Dai XH, Yang YH, Ding CF. Magnetic guanidyl-functionalized covalent organic framework composite: a platform for specific capture and isolation of phosphopeptides and exosomes. Microchim Acta. 2022;189:330. https://doi.org/10.1007/s00604-022-05394-3.

    Article  CAS  Google Scholar 

  12. Xu ZX, Wu YL, Hu XF, Deng CH, Sun NR. Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. Chin Chem Lett. 2022;33:4695–9. https://doi.org/10.1016/j.cclet.2021.12.069.

    Article  CAS  Google Scholar 

  13. Wang QY, Fang F, Sun LL. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics. Anal Bioanal Chem. 2023;415:4521–31. https://doi.org/10.1007/s00216-023-04677-9.

    Article  CAS  PubMed  Google Scholar 

  14. Zheng HJ, Jia JX, Li Z, Jia Q. Bifunctional magnetic supramolecular-organic framework: a nanoprobe for simultaneous enrichment of glycosylated and phosphorylated peptides. Anal Chem. 2020;92:2680–9. https://doi.org/10.1021/acs.analchem.9b04691.

    Article  CAS  PubMed  Google Scholar 

  15. Gao W, Zhang F, Zhang S, Li JY, Lian HZ. Hydrophilic porous magnetic graphene oxide/chitosan composites for the selective separation and enrichment of N-glyco- and phosphopeptides. ACS Appl Nano Mater. 2023;6:15563–6673. https://doi.org/10.1021/acsanm.3c02350.

    Article  CAS  Google Scholar 

  16. Jiang DD, Wu SY, Li YY, Qi RX, Liu JH. Effective enrichment of phosphopeptides using magnetic polyoxometalate-based metal-organic frameworks. ACS Biomater Sci Eng. 2023;9:5632–8. https://doi.org/10.1021/acsbiomaterials.3c00986.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang MM, Wang H, Bhandari R, Pan QH, Sun FY. Facile synthesis of titanium(IV) ion-immobilized arsenate-modified poly(glycidyl methacrylate) microparticles and the application to the specific enrichment of phosphoproteins. Anal Bioanal Chem. 2021;413:2893–901. https://doi.org/10.1007/s00216-021-03215-9.

    Article  CAS  PubMed  Google Scholar 

  18. Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA. A two-dimensional metallacycle cross-linked switchable polymer for fast and highly efficient phosphorylated peptide enrichment. J Am Chem Soc. 2021;143:8295–304. https://doi.org/10.1021/jacs.0c12904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen JK, Wang B, Luo YT, Wang WM, Ding CF, Yan YH. Facile preparation of porphyrin-based porous organic polymers for specific enrichment and isolation of phosphopeptides and phosphorylated exosomes. Talanta. 2023;264: 124771. https://doi.org/10.1016/j.talanta.2023.124771.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XY, Hua SW, Feng QS, Ding CF, Wu YY, Yan YH. A novel hydrophilic polymer-coated magnetic nanomaterial based on the HILIC strategy for fast separation of glycopeptides and glycosylated exosomes. Anal Bioanal Chem. 2023;415:5755–67. https://doi.org/10.1007/s00216-023-04857-7.

    Article  CAS  PubMed  Google Scholar 

  21. Borrebaeck CAK. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17:199–204. https://doi.org/10.1038/nrc.2016.153.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan YS, Zhou XJ, Tong Q, Zhang L, Zhang L, Qi ZQ, Ge S, Zhang KZ. Change in plasma levels of amino acid neurotransmitters and its correlation with clinical heterogeneity in early Parkinson’s disease patients. CNS Neurosci Ther. 2013;19:889–96. https://doi.org/10.1111/cns.12165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morales I, Sabate M, Rodriguez M. Striatal glutamate induces retrograde excitotoxicity and neuronal degeneration of intralaminar thalamic nuclei: their potential relevance for Parkinson’s disease. Eur J Neurosci. 2013;38:2172–82. https://doi.org/10.1111/ejn.12205.

    Article  PubMed  Google Scholar 

  24. Yang J, Zhang YM, Zhao SG, Zhang ZL, Tong XQ, Wei F, Lu ZN. Heat shock protein 70 induction by glutamine increases the α-synuclein degradation in SH-SY5Y neuroblastoma cells. Mol Med Rep. 2015;12:5524–30. https://doi.org/10.3892/mmr.2015.4027.

    Article  CAS  PubMed  Google Scholar 

  25. Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and pathological roles of cdk5: potential directions for therapeutic targeting in neurodegenerative disease. 2020;11:1218–1230. https://doi.org/10.1021/acschemneuro.0c00096.

  26. Xin X, Wang Y, Zhang LL, Zhang D, Sha LH, Zhu ZY, Huang XY, Mao WY, Zhang JF. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. Eur J Med Chem. 2023;248: 115102. https://doi.org/10.1016/j.ejmech.2023.115102.

    Article  CAS  PubMed  Google Scholar 

  27. Dai L, Zou L, Meng L, Qiang GF, Yan MM, Zhang ZT. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol. 2021;58:2183–201. https://doi.org/10.1007/s12035-020-02232-6.

    Article  CAS  PubMed  Google Scholar 

  28. Chapman MA. Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease. Med Hypotheses. 2014;83:203–7. https://doi.org/10.1016/j.mehy.2014.04.029.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan XH, Ye LB, Xiao J. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol. 2015;51:1343–52. https://doi.org/10.1007/s12035-014-8813-7.

    Article  CAS  PubMed  Google Scholar 

  30. Guo XY, Song W, Chen K, Chen XP, Zheng ZZ, Cao B, Huang R, Zhao B, Wu Y, Shang HF. The serum lipid profile of Parkinson’s disease patients: a study from China. Int J Neurosci. 2015;125:838–44. https://doi.org/10.3109/00207454.2014.979288.

    Article  CAS  PubMed  Google Scholar 

  31. Skaanning LK, Santoro A, Skamris T, Martinsen JH, D’Ursi AM, Bucciarelli S, Vestergaard B, Bugge K, Langkilde AE, Kragelund BB. The non-fibrillating N-terminal of α-synuclein binds and co-fibrillates with heparin. 2020;10:1192. https://doi.org/10.3390/biom10081192.

  32. Galon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain. 2004;127:1075–84. https://doi.org/10.1093/brain/awh128.

    Article  Google Scholar 

  33. Burn DJ, Rinne JO, Quinn NP, Lees AJ, Marsden CD, Brooks DJ. Striatal opioid receptor binding in Parkinson’s disease, striatonigral degeneration and Steele-Richardson-Olszewski syndrome A [11C] diprenoiphine PET study. Brain. 1995;118:951–8. https://doi.org/10.1093/brain/118.4.951.

    Article  PubMed  Google Scholar 

Download references

Funding

This research is financed by the National Natural Science Foundation of China (21927805), Natural Science Foundation of Zhejiang Province (LY22B050008).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoya Zhang: investigation; data curation; formal analysis; validation; writing—original draft. Bing Wang: data curation; formal analysis; validation; supervision; writing—review and editing. Yiting Luo: writing—review and editing. Chuan-Fan Ding: resources, supervision. Yinghua Yan: conceptualization; methodology; writing—review and editing; resources; validation; project administration.

Corresponding authors

Correspondence to Chuan-Fan Ding or Yinghua Yan.

Ethics declarations

Ethics approval

The ethically approved human serums used in this study were collected with the consent of the volunteers. This study was approved by the experimental ethics committee of Ningbo University and its affiliated hospital (KS20227002).

Consent for publication

All authors approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5678 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, B., Luo, Y. et al. An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson’s disease patients. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05287-9

Keywords

Navigation