Skip to main content
Log in

Three-way junction structure-mediated reverse transcription-free exponential amplification reaction for pathogen RNA detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since RNA is an important biomarker of many infectious pathogens, RNA detection of pathogenic organisms is crucial for disease diagnosis and environmental and food safety. By simulating the base mismatch during DNA replication, this study presents a novel three-way junction structure-mediated reverse transcription-free exponential amplification reaction (3WJ-RTF-EXPAR) for the rapid and sensitive detection of pathogen RNA. The target RNA served as a switch to initiate the reaction by forming a three-way junction (3WJ) structure with the ex-trigger strand and the ex-primer strand. The generated trigger strand could be significantly amplified through EXPAR to open the stem-loop structure of the molecular beacon to emit fluorescence signal. The proofreading activity of Vent DNA polymerase, in combination with the unique structure of 2+1 bases at the 3′-end of the ex-primer strand, could enhance the role of target RNA as a reaction switch to reduce non-specific amplification and ensure excellent specificity to differentiate target pathogen from those causing similar symptoms. Furthermore, detection of target RNA showed a detection limit of 1.0×104 copies/mL, while the time consumption was only 20 min, outperforming qRT-LAMP and qRT-PCR, the most commonly used RNA detection methods in clinical practice. All those indicates the great application prospects of this method in clinical diagnostic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Browne DJ, Brady JL, Waardenberg AJ, Loiseau C, Doolan DL. An analytically and diagnostically sensitive RNA extraction and RT-qPCR protocol for peripheral blood mononuclear cells. Front Immunol. 2020;11:402. https://doi.org/10.3389/fimmu.2020.00402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4. https://doi.org/10.1038/cr.2015.82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Várallyay É, Burgyán J, Havelda Z. MicroRNA detection by Northern blotting using locked nucleic acid probes. Nat Protoc. 2008;3:190–6. https://doi.org/10.1038/nprot.2007.528.

    Article  CAS  PubMed  Google Scholar 

  4. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1:1559–82. https://doi.org/10.1038/nprot.2006.236.

    Article  CAS  PubMed  Google Scholar 

  5. Kenzelmann M, Maertens S, Hergenhahn M, Kueffer S, Hotz-Wagenblatt A, Li L, et al. Microarray analysis of newly synthesized RNA in cells and animals. Proc Nat Acad Sci. 2007;104:6164–9. https://doi.org/10.1073/pnas.0610439104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franz O, Bruchhaus I, Roeder T. Verification of differential gene transcription using virtual Northern blotting. Nucleic Acids Res. 1999;27:e3. https://doi.org/10.1093/nar/27.11.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiley SL, Jackman J, Babak T, Trochesset M, Morris QD, Phizicky E, et al. Detection and discovery of RNA modifications using microarrays. Nucleic Acids Res. 2005;33:e2–e2. https://doi.org/10.1093/nar/gni002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13:166. https://doi.org/10.1186/s13045-020-01005-x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alcoba-Florez J, González-Montelongo R, Íñigo-Campos A, de Artola DG, Gil-Campesino H. The microbiology technical support T, et al. Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples. Int J Infect Dis. 2020;97:66–8. https://doi.org/10.1016/j.ijid.2020.05.099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jenkins HH, Lopez AAT, Tarantini FS, Tomlin H, Scales D, Lee IN, et al. Performance evaluation of a non-invasive one-step multiplex RT-qPCR assay for detection of SARS-CoV-2 direct from saliva. Sci Rep. 2022;12:11553. https://doi.org/10.1038/s41598-022-15616-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar MMH, Naser SR, Chowdhury SF, Khan MS, Habib MA, Akter S, et al. M gene targeted qRT-PCR approach for SARS-CoV-2 virus detection. Sci Rep. 2023;13:16659. https://doi.org/10.1038/s41598-023-43204-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Zhang X, Liao Y, Shi C, Wang Y, Mu X, et al. Engineering of a chimeric template triggers rNase H-based isothermal amplification approach for sensitive detection of pathogen RNA. Anal Chem. 2023;95:18249–57. https://doi.org/10.1021/acs.analchem.3c04098.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma A, Balda S, Apreja M, Kataria K, Capalash N, Sharma P. COVID-19 diagnosis: current and future techniques. Int J Biol Macromol. 2021;193:1835–44. https://doi.org/10.1016/j.ijbiomac.2021.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colbert AJ, Lee DH, Clayton KN, Wereley ST, Linnes JC, Kinzer-Ursem TL. PD-LAMP smartphone detection of SARS-CoV-2 on chip. Anal Chim Acta. 2022;1203:339702. https://doi.org/10.1016/j.aca.2022.339702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Ness J, Van Ness LK, Galas DJ. Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci U S A. 2003;100:4504–9. https://doi.org/10.1073/pnas.0730811100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian J, Zhang Q, Liu M, Wang Y, Lu M. A portable system for isothermal amplification and detection of exosomal microRNAs. Biosens Bioelectron. 2022;196:113707. https://doi.org/10.1016/j.bios.2021.113707.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Zhang CY. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem. 2012;84:224–31. https://doi.org/10.1021/ac202405q.

    Article  CAS  PubMed  Google Scholar 

  18. Mittal S, Thakur S, Mantha AK, Kaur H. Bio-analytical applications of nicking endonucleases assisted signal-amplification strategies for detection of cancer biomarkers -DNA methyl transferase and microRNA. Biosens Bioelectron. 2019;124–125:233–43. https://doi.org/10.1016/j.bios.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  19. Kim HY, Song J, Park HG. Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction. Biosens Bioelectron. 2021;178:113048. https://doi.org/10.1016/j.bios.2021.113048.

    Article  CAS  PubMed  Google Scholar 

  20. Wei S, Chen G, Jia X, Mao X, Chen T, Mao D, et al. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Anal Chim Acta. 2020;1095:179–84. https://doi.org/10.1016/j.aca.2019.10.020.

    Article  CAS  PubMed  Google Scholar 

  21. Wang K, Zhang K, Lv Z, Zhu X, Zhu L, Zhou F. Ultrasensitive detection of microRNA with isothermal amplification and a time-resolved fluorescence sensor. Biosens Bioelectron. 2014;57:91–5. https://doi.org/10.1016/j.bios.2014.01.058.

    Article  CAS  PubMed  Google Scholar 

  22. Reid MS, Paliwoda RE, Zhang H, Le XC. Reduction of background generated from template-template hybridizations in the exponential amplification reaction. Anal Chem. 2018;90:11033–9. https://doi.org/10.1021/acs.analchem.8b02788.

    Article  CAS  PubMed  Google Scholar 

  23. Qian J, Ferguson TM, Shinde DN, Ramirez-Borrero AJ, Hintze A, Adami C, et al. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Res. 2012;40:e87. https://doi.org/10.1093/nar/gks230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Q, Chen F, Xu F, Zhao Y, Fan C. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. Anal Chem. 2014;86:8098–105. https://doi.org/10.1021/ac501038r.

    Article  CAS  PubMed  Google Scholar 

  25. Chen F, Fan C, Zhao Y. Inhibitory impact of 3′-terminal 2′-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana. Anal Chem. 2015;87:8758–64. https://doi.org/10.1021/acs.analchem.5b01683.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Wang H, Liu C, Wang H, Li Z. A three-way junction structure-based isothermal exponential amplification strategy for sensitive detection of 3′-terminal 2’-O-methylated plant microRNA. Chem Commun (Camb). 2017;53:1124–7. https://doi.org/10.1039/c6cc08726d.

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Wang Y, Liu S, Yu J, Wang H, Guo Y, et al. Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron. 2016;81:236–41. https://doi.org/10.1016/j.bios.2016.02.034.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan C, Fang J, Luo X, Zhang Y, Huang G, Zeng X, et al. One-step isothermal amplification strategy for microRNA specific and ultrasensitive detection based on nicking-assisted entropy-driven DNA circuit triggered exponential amplification reaction. Anal Chim Acta. 2022;1203:339706. https://doi.org/10.1016/j.aca.2022.339706.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Tian T, Zhang Y, Ding L, Yu J, Yan M. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification. Biosens Bioelectron. 2017;89:710–4. https://doi.org/10.1016/j.bios.2016.10.099.

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Zhou X, Ma Y, Lin X, Dai Z, Zou X. Asymmetric exponential amplification reaction on a toehold/biotin featured template: an ultrasensitive and specific strategy for isothermal microRNAs analysis. Nucleic Acids Res. 2016;44:e130. https://doi.org/10.1093/nar/gkw504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emaus MN, Anderson JL. Magnetic ionic liquids as microRNA extraction solvents and additives for the exponential amplification reaction. Anal Chim Acta. 2021;1181:338900. https://doi.org/10.1016/j.aca.2021.338900.

    Article  CAS  PubMed  Google Scholar 

  32. Lin Q, Cao Y, Han G, Sun W, Weng W, Chen H, et al. Programmable clostridium perfringens argonaute-based, one-pot assay for the multiplex detection of miRNAs. Anal Chem. 2023;95:13401–6. https://doi.org/10.1021/acs.analchem.3c01990.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Li D, Cheng W, Hu R, Sang Y, Yin Y, et al. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery. Anal Chim Acta. 2016;936:229–35. https://doi.org/10.1016/j.aca.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  34. Yu Y, Chen Z, Shi L, Yang F, Pan J, Zhang B, et al. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. Anal Chem. 2014;86:8200–5. https://doi.org/10.1021/ac501505a.

    Article  CAS  PubMed  Google Scholar 

  35. Li RD, Yin BC, Ye BC. Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron. 2016;86:1011–6. https://doi.org/10.1016/j.bios.2016.07.042.

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, An T, Ma Y, Situ B, Chen D, Xu Y, et al. Isothermal amplification on a structure-switchable symmetric toehold Dumbbell-Template: a strategy enabling microRNA analysis at the single-cell level with ultrahigh specificity and accuracy. Anal Chem. 2018;90:859–65. https://doi.org/10.1021/acs.analchem.7b03713.

    Article  CAS  PubMed  Google Scholar 

  37. Carter JG, Orueta Iturbe L, Duprey JHA, Carter IR, Southern CD, Rana M, et al. Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription-free exponential amplification reaction, RTF-EXPAR. Proc Natl Acad Sci U S A. 2021;118:e2100347118. https://doi.org/10.1073/pnas.2100347118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hang XM, Wang HY, Liu PF, Zhao KR, Wang L. Cas12a-assisted RTF-EXPAR for accurate, rapid and simple detection of SARS-CoV-2 RNA. Biosens Bioelectron. 2022;216:114683. https://doi.org/10.1016/j.bios.2022.114683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang K, Martí AA. Recent trends in molecular beacon design and applications. Anal Bioanal Chem. 2012;402:3091–102. https://doi.org/10.1007/s00216-011-5570-6.

    Article  CAS  PubMed  Google Scholar 

  40. Bellassai N, D’Agata R, Spoto G. Novel nucleic acid origami structures and conventional molecular beacon-based platforms: a comparison in biosensing applications. Anal Bioanal Chem. 2021;413:6063–77. https://doi.org/10.1007/s00216-021-03309-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steitz TA. DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 1999;274:17395–8. https://doi.org/10.1074/jbc.274.25.17395.

    Article  CAS  PubMed  Google Scholar 

  42. Huang X, Yan Y, Zhang L, Yuan L, Tang Y, Jiang X, et al. Simple, sensitive, colorimetric detection of pyrophosphate via the analyte-triggered decomposition of metal-organic frameworks regulating their adaptive multi-color Tyndall effect. Anal Bioanal Chem. 2024. https://doi.org/10.1007/s00216-024-05200-4.

    Article  PubMed  Google Scholar 

Download references

Funding

We highly appreciate the financial support of the Science and Technology Benefiting the People Demonstration Project of Qingdao (22-2-7-smjk-2-nsh), the Natural Science Foundation of Shandong Province (ZR2023MC064), and the Key Project of Shandong Province Natural Science Foundation (ZR2020KH030). This work is supported by the Taishan Industrial Experts Program.

Author information

Authors and Affiliations

Authors

Contributions

Xinguang Zhang, Chao Jiang, Yuting Shan, and Yao Liu performed the experiments. Yang Li, Xinguang Zhang, Chao Jiang, Yuting Shan, and Yao Liu analyzed the data. Yang Li, Qing Wang, Qunqun Guo, Cuiping Ma, and Chao Shi designed the study. Yang Li and Xinguang Zhang wrote the manuscript. All authors contributed to the writing of the paper, had primary responsibility for the final content, and read and approved the final manuscript.

Corresponding authors

Correspondence to Qunqun Guo or Chao Shi.

Ethics declarations

Ethical approval

The authorized Human Health and Ethics Committee of the Affiliated Hospital of Qingdao University approved this study (Approval No. QDU-HEC-2023260). All volunteers providing nasopharyngeal swabs signed informed consent forms. All methods were carried out in accordance with the relevant guidelines and regulations.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Y., Wang, Q. et al. Three-way junction structure-mediated reverse transcription-free exponential amplification reaction for pathogen RNA detection. Anal Bioanal Chem 416, 3161–3171 (2024). https://doi.org/10.1007/s00216-024-05264-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05264-2

Keywords

Navigation