Skip to main content
Log in

Sample preparation for fatty acid analysis in biological samples with mass spectrometry-based strategies

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fatty acids (FAs) have attracted many interests for their pivotal roles in many biological processes. Imbalance of FAs is related to a variety of diseases, which makes the measurement of them important in biological samples. Over the past two decades, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs owing to its high sensitivity and precision. Due to complex matrix effect of biological samples and inherent poor ionization efficiency of FAs in MS, sample preparation including extraction and chemical derivatization prior to analysis are often employed. Here, we describe an updated overview of FA extraction techniques, as well as representative derivatization methods utilized in different MS platforms including gas chromatography-MS, liquid chromatography-MS, and mass spectrometry imaging based on different chain lengths of FAs. Derivatization strategies for the identification of double bond location in unsaturated FAs are also summarized and highlighted. The advantages, disadvantages, and prospects of these methods are compared and discussed. This review provides the development and valuable information for sample pretreatment approaches and qualitative and quantitative analysis of interested FAs using different MS-based platforms in complex biological matrices. Finally, the challenges of FA analysis are summarized and the future perspectives are prospected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021, Elsevier

Fig. 2

Copyright 2021, Elsevier

Fig. 3

Copyright 2022, Elsevier

Fig. 4

Copyright 2022, American Chemical Society

Similar content being viewed by others

References

  1. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiu H-H, Kuo C-H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J Food Drug Anal. 2020;28(1):60–73.

    Article  CAS  PubMed  Google Scholar 

  3. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sternberg F, Sternberg C, Dunkel A, Beikbaghban T, Gregor A, Szarzynski A, et al. Ketogenic diets composed of long-chain and medium-chain fatty acids induce cardiac fibrosis in mice. Mol Metab. 2023;72:101711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang L-P, Sun H-Z. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front Endocrinol. 2022;13:1051807.

    Article  Google Scholar 

  6. Nwagbo U, Bernstein PS. Understanding the roles of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) in eye health. Nutrients. 2023;15(14):3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut. 2022;71(11):2233–52.

    Article  PubMed  Google Scholar 

  8. Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L, et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. Bmj-British Med J. 2019;366:14697.

    Google Scholar 

  9. Wu H, Han Y, Sillke YR, Deng H, Siddiqu S, Treese C, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019;11(11):e10698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020(3):CD003177.

  11. Xiang L, Zhu L, Huang Y, Cai Z. Application of derivatization in fatty acids and fatty acyls detection: mass spectrometry-based targeted lipidomics. Small Methods. 2020;4(8):2000160.

    Article  CAS  Google Scholar 

  12. Chen Y, Xie C, Wang X, Cao G, Ru Y, Song Y, et al. 3-Acetylpyridine on-tissue Paterno-Buchi derivatization enabling high coverage lipid C=C location-resolved MS imaging in biological tissues. Anal Chem. 2022;94(44):15367–76.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, et al. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics. 2020;16(1):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Kikushima K, Endo M, Kahyo T, Horikawa M, Matsudaira T, et al. Imaging and manipulation of plasma membrane fatty acid clusters using TOF-SIMS combined optogenetics. Cells. 2023;12(1):10.

    Article  CAS  Google Scholar 

  15. Halket JM, Zaikin VG. Derivatization in mass spectrometry - 1 Silylation. Eur J Mass Spectrom. 2003;9(1):1–21.

    Article  CAS  Google Scholar 

  16. Halket JM. Zaikin VG Derivatization in mass spectrometry-3 Alkylation (arylation). Eur J Mass Spectrom. 2004;10(1):1–19.

    Article  CAS  Google Scholar 

  17. Zaikin VG, Halket JM. Derivatization in mass spectrometry - 2 Acylation. Eur J Mass Spectrom. 2003;9(5):421–34.

    Article  CAS  Google Scholar 

  18. Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B. 2023;1215:123572.

    Article  CAS  Google Scholar 

  19. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    Article  CAS  PubMed  Google Scholar 

  20. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  21. Saini RK, Prasad P, Shang X, Keum Y-S. Advances in lipid extraction methods-a review. Int J Mol Sci. 2021;22(24):13643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marmer WN, Maxwell RJ. Dry column method for the quantitative extraction and simultaneous class separation of lipids from muscle-tissue. Lipids. 1981;16(5):365–71.

    Article  CAS  PubMed  Google Scholar 

  24. Lofgren L, Stahlman M, Forsberg G-B, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dole VP, Meinertz H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960;235(9):2595–9.

    Article  CAS  PubMed  Google Scholar 

  26. Li F, Zhang Q, Tong Y, Jiang J, Liu J. Development and validation of a liquid chromeatography-tandem mass spectrometry method for simultaneous quantification of medium- and long-chain saturated fatty acids in hamster plasma samples. Rapid Commun Mass Spectrom. 2022;36(11):e9280.

    Article  CAS  PubMed  Google Scholar 

  27. Park H, Song W-Y, Cha H, Kim T-Y. Development of an optimized sample preparation method for quantification of free fatty acids in food using liquid chromatography-mass spectrometry. Sci Rep. 2021;11(1):5947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vargas-Munoz MA, Cerda V, Turnes Palomino G, Palacio E. Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method. Anal Bioanal Chem. 2021;413(15):3833–45.

    Article  CAS  PubMed  Google Scholar 

  29. Ferracane A, Aloisi I, Galletta M, Zoccali M, Tranchida PQ, Micalizzi G, et al. Automated sample preparation and fast GC-MS determination of fatty acids in blood samples and dietary supplements. Anal Bioanal Chem. 2022;414(29–30):8423–35.

    Article  CAS  PubMed  Google Scholar 

  30. Pal P, Nayak J. Acetic acid production and purification: critical review towards process intensification. Sep Purif Rev. 2017;46(1):44–61.

    Article  CAS  Google Scholar 

  31. Yao L, Davidson EA, Shaikh MW, Forsyth CB, Prenni JE, Broeckling CD. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS. Anal Bioanal Chem. 2022;414(15):4391–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kim K-S, Lee Y, Chae W, Cho J-Y. An improved method to quantify short-chain fatty acids in biological samples using gas chromatography-mass spectrometry. Metabolites. 2022;12(6):525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu J-H, Mao Q, Wang S-Y, Liu H, Zhou S-S, Zhang W, et al. Optimization and validation of direct gas chromatography-mass spectrometry method for simultaneous quantification of ten short-chain acids in rat feces. J Chromatogr A. 2022;1669:462958.

    Article  CAS  PubMed  Google Scholar 

  34. Rohde JK, Fuh MM, Evangelakos I, Pauly MJ, Schaltenberg N, Siracusa F, et al. A gas chromatography mass spectrometry-based method for the quantification of short chain fatty acids. Metabolites. 2022;12(2):170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Assadi F, Mogaddam MRA, Farajzadeh MA, Shayanfar A, Nemati M. Development of a green in-situ derivatization and deep eutectic solvent-based dispersive liquid-liquid microextraction method for analysis of short-chain fatty acids in beverage samples optimized by response surface methodology. Microchem J. 2021;166:106226.

    Article  CAS  Google Scholar 

  36. Foote AP. TECHNICAL NOTE: Analysis of volatile fatty acids in rumen fluid by gas chromatography mass spectrometry using a dimethyl carbonate extraction. J Anim Sci. 2022;100(8):1–7.

    Article  Google Scholar 

  37. Yang C, Li J, Wang S, Wang Y, Jia J, Wu W, et al. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem. 2022;384:132620.

    Article  CAS  PubMed  Google Scholar 

  38. Jin Z, Zou G, Mao X, Guan S, Guan W. Rapid determination of free fatty acids in the extracellular medium of cyanobacteria by stir bar sorptive extraction (SBSE) coupled to ultra-high-performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). Anal Lett. 2021;54(17):2801–11.

    Article  CAS  Google Scholar 

  39. Deng G, Xie L, Xu S, Kang X, Ma J. Fiber nanoarchitectonics for pre-treatments in facile detection of short-chain fatty acids in waste water and faecal samples. Polymers. 2021;13(22):3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang S, Yun J, Park H-Y, Lee J-E. Analytical factors for eight short-chain fatty acid analyses in mouse feces through headspace solid-phase microextraction-triple quadrupole gas chromatography tandem mass spectrometry. Anal Bioanal Chem. 2023;415(25):6227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tintrop LK, Lieske-Overgrand JR, Wickneswaran K, Abis R, Brunstermann R, Jochmann MA, et al. Isotope-labeling in situ derivatization and HS-SPME arrow GC-MS/MS for simultaneous determination of fatty acids and fatty acid methyl esters in aqueous matrices. Anal Bioanal Chem. 2023;415:6525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang S, Wang H, Zhu M-J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54.

    Article  CAS  PubMed  Google Scholar 

  43. Furuhashi T, Sugitate K, Nakai T, Jikumaru Y, Ishihara G. Rapid profiling method for mammalian feces short chain fatty acids by GC-MS. Anal Biochem. 2018;543:51–4.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics. 2013;9(4):818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomcik K, Ibarra RA, Sadhukhan S, Han Y, Tochtrop GP, Zhang G-F. Isotopomer enrichment assay for very short chain fatty acids and its metabolic applications. Anal Biochem. 2011;410(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  46. Fu Z, Jia Q, Zhang H, Kang L, Sun X, Zhang M, et al. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction - gas chromatography tandem mass spectrometry. J Chromatogr A. 2022;1661:462680.

    Article  CAS  PubMed  Google Scholar 

  47. Gu H, Jasbi P, Patterson J, Jin Y. Enhanced detection of short-chain fatty acids using gas chromatography mass spectrometry. Curr Protocols. 2021;1(6): e177.

    Article  CAS  Google Scholar 

  48. Xia F, Guo L, Cui P, Xu Q, Huang J, Zhou H, et al. A sensitive and accurate GC-MS method for analyzing microbial metabolites short chain fatty acids and their hydroxylated derivatives in newborn fecal samples. J Pharm Biomed Anal. 2023;223:115148.

    Article  CAS  PubMed  Google Scholar 

  49. Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;854:86–94.

    Article  CAS  PubMed  Google Scholar 

  50. Peters R, Hellenbrand J, Mengerink Y, Van der Wal S. On-line determination of carboxylic acids, aldehydes and ketones by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionisation mass spectrometry after derivatization with 2-nitrophenylhydrazine. J Chromatogr A. 2004;1031(1–2):35–50.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng M, Cao H. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J Chromatogr B. 2018;1083:137–45.

    Article  CAS  Google Scholar 

  52. Chan JCY, Kioh DYQ, Yap GC, Lee BW, Chan ECY. A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with C-12- and C-13-labelled aniline. J Pharm Biomed Anal. 2017;138:43–53.

    Article  CAS  PubMed  Google Scholar 

  53. Shafaei A, Vamathevan V, Pandohee J, Lawler NG, Broadhurst D, Boyce MC. Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry. Anal Bioanal Chem. 2021;413(25):6333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valdivia-Garcia MA, Chappell KE, Camuzeaux S, Olmo-Garcia L, van der Sluis VH, Radhakrishnan ST, et al. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal. 2022;221:115060.

    Article  CAS  PubMed  Google Scholar 

  55. Chen L, Sun X, Khalsa AS, Bailey MT, Kelleher K, Spees C, et al. Accurate and reliable quantitation of short chain fatty acids from human feces by ultra high-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Pharm Biomed Anal. 2021;200:114066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li C, Liu Z, Bath C, Marett L, Pryce J, Rochfort S. Optimised method for short-chain fatty acid profiling of bovine milk and serum. Molecules. 2022;27(2):436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Calvigioni M, Bertolini A, Codini S, Mazzantini D, Panattoni A, Massimino M, et al. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains. Front Microbiol. 2023;14:1124144.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fu H, Zhang Q-l, Huang X-w, Ma Z-h, Zheng X-l, Li S-l et al. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2020;34(9):e8730.

  59. Wei J, Xiang L, Li X, Song Y, Yang C, Ji F, et al. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal Chim Acta. 2020;1100:66–74.

    Article  CAS  PubMed  Google Scholar 

  60. Song HE, Lee HY, Kim SJ, Back SH, Yoo HJ. A facile profiling method of short chain fatty acids using liquid chromatography-mass spectrometry. Metabolites. 2019;9(9):173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nagatomo R, Kaneko H, Kamatsuki S, Ichimura-Shimizu M, Ishimaru N, Tsuneyama K, et al. Short-chain fatty acids profiling in biological samples from a mouse model of Sjo?gren?s syndrome based on derivatized LC-MS/MS assay. J Chromatogr B. 2022;1210:123432.

    Article  CAS  Google Scholar 

  62. Gowda D, Li Y, Gowda SGB, Ohno M, Chiba H, Hui S-P. Determination of short-chain fatty acids by N, N-dimethylethylenediamine derivatization combined with liquid chromatography/mass spectrometry and their implication in influenza virus infection. Anal Bioanal Chem. 2022;414(22):6419–30.

    Article  CAS  PubMed  Google Scholar 

  63. Feng X, Liu N, Yang Y, Feng S, Wang J, Meng Q. Isotope-coded chemical derivatization method for highly accurately and sensitively quantifying short-chain fatty acids. J Agric Food Chem. 2022;70(20):6253–63.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Yang S, Wang J, Xu Y, Zhao H, Lei J, et al. Integrated LC-MS metabolomics with dual derivatization for quantification of FFAs in fecal samples of hepatocellular carcinoma patients. J Lipid Res. 2021;62:100143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Forsman TT, Paulson AE, Larson EA, Looft T, Lee YJ. On-tissue chemical derivatization of volatile metabolites for matrix-assisted laser desorption/ionization mass spectrometry imaging. J Mass Spectrom. 2023;58(5):e4918.

    Article  CAS  PubMed  Google Scholar 

  66. Zotov VA, Bessonov VV, Risnik DV. Methodological aspects of the analysis of fatty acids in biological samples. Appl Biochem Microbiol. 2022;58(1):83–95.

    Article  CAS  Google Scholar 

  67. Ki I. Fukubayashi Y Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res. 2010;51(3):635–40.

    Article  Google Scholar 

  68. Cha D, Liu M, Zeng Z. Cheng De, Zhan G Analysis of fatty acids in lung tissues using gas chromatography-mass spectrometry preceded by derivatization-solid-phase microextraction with a novel fiber. Anal Chim Acta. 2006;572(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  69. Masood A, Stark KD, Salem N. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res. 2005;46(10):2299–305.

    Article  CAS  PubMed  Google Scholar 

  70. Casado AG, Hernandez EJA, Espinosa P, Vilchez JL. Determination of total fatty acids (C-8-C-22) in sludges by gas chromatography mass spectrometry. J Chromatogr A. 1998;826(1):49–56.

    Article  CAS  Google Scholar 

  71. Glaser C, Demmelmair H, Koletzko B. High-throughput analysis of fatty acid composition of plasma glycerophospholipids. J Lipid Res. 2010;51(1):216–21.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Orozco-Solano MI, Priego-Capote F. Luque de Castro MD Analysis of esterified and nonesterified fatty acids in serum from obese individuals after intake of breakfasts prepared with oils heated at frying temperature. Anal Bioanal Chem. 2013;405(18):6117–29.

    Article  CAS  PubMed  Google Scholar 

  73. Muller KD, Husmann H, Nalik HP, Schomburg G. Transesterification of fatty-acids from microorganisms and human blood-serum by trimethylsulfonium hydroxide (TMSH) for GC analysis. Chromatographia. 1990;30(5–6):245–8.

    Article  Google Scholar 

  74. Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811(11):648–56.

    Article  CAS  Google Scholar 

  75. Tammekivi E, Vahur S, Kekisev O, van der Werf ID, Toom L, Herodes K, et al. Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils. Anal Methods. 2019;11(28):3514–22.

    Article  CAS  Google Scholar 

  76. Goers PE, Wittenhofer P, Ayala-Cabrera JF, Meckelmann SW. Potential of atmospheric pressure ionization sources for the analysis of free fatty acids in clinical and biological samples by gas chromatography-mass spectrometry. Anal Bioanal Chem. 2022;414(22):6621–34.

    Article  CAS  Google Scholar 

  77. Gries P, Rathore AS, Lu X, Chiou J, Huynh YB, Lodi A, et al. Automated trimethyl sulfonium hydroxide derivatization method for high-throughput fatty acid profiling by gas chromatography-mass spectrometry. Molecules. 2021;26(20):6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Foguet-Romero E, Samarra I, Guirro M, Riu M, Joven J, Menendez JA, et al. Optimization of a GC-MS injection-port derivatization methodology to enhance metabolomics analysis throughput in biological samples. J Proteome Res. 2022;21(11):2555–65.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng S-J, Liu S-J, Zhu Q-F, Guo N, Wang Y-L, Yuan B-F, et al. Establishment of liquid chromatography retention index based on chemical labeling for metabolomic analysis. Anal Chem. 2018;90(14):8412–20.

    Article  CAS  PubMed  Google Scholar 

  80. Mok HJ, Lee JW, Bandu R, Kang HS, Kim K-H, Kim KP. A rapid and sensitive profiling of free fatty acids using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Adv. 2016;6(38):32130–9.

    Article  CAS  Google Scholar 

  81. Jiang R, Jiao Y, Zhang P, Liu Y, Wang X, Huang Y, et al. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89(22):12223–30.

    Article  CAS  PubMed  Google Scholar 

  82. Pu Q, Wang M, Jiang N, Luo Y, Li X, Hu C, et al. Novel isotope-labeled derivatization strategy for the simultaneous analysis of fatty acids and fatty alcohols and its application in idiopathic inflammatory myopathies and pancreatic cancer. Anal Chem. 2023;95(21):8197–205.

    Article  CAS  PubMed  Google Scholar 

  83. Yang R, Xia F, Su H, Wan J-B. Quantitative analysis of n-3 polyunsaturated fatty acids and their metabolites by chemical isotope labeling coupled with liquid chromatography - mass spectrometry. J Chromatogr B. 2021;1172:122666.

    Article  CAS  Google Scholar 

  84. Wei J, Xiao X, Li K, Song Y, Huang S-K, Cai Z, et al. Derivatization strategy for semi-quantitative analysis of medium- and long-chain fatty acids using multiple reaction monitoring. Talanta. 2021;233:122464.

    Article  CAS  PubMed  Google Scholar 

  85. Feng X, Wang J, Tang Z, Chen B, Hou X, Li J, et al. A strategy for accurately and sensitively quantifying free and esterified fatty acids using liquid chromatography mass spectrometry. Front Nutr. 2022;9:977076.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst. 2022;147(10):2115–23.

    Article  CAS  PubMed  Google Scholar 

  87. Cheng J, Li Y, Wang Y, Zhang J, Sun T, Zhang L, et al. Quaterization derivatization with bis(pyridine) iodine tetrafluoroboride: high-sensitivity mass spectrometric analysis of unsaturated fatty acids in human thyroid tissues. Anal Chem. 2022;94(32):11185–91.

    Article  CAS  PubMed  Google Scholar 

  88. Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, et al. On-tissue chemical derivatization for comprehensive mapping of brain carboxyl and aldehyde metabolites by MALDI-MS imaging. J Am Soc Mass Spectrom. 2023;34(5):836–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu Y, Cao Y, Chen D, Zhou Y, Zhang L, Su Y, et al. An online derivatization strategy targeting carbon-carbon double bonds by laser-ablation carbon fiber ionization mass spectrometry imaging: unraveling the spatial characteristic in mountain-cultivated ginseng and garden-cultivated ginseng with different ages. Food Chem. 2023;410:135365.

    Article  CAS  PubMed  Google Scholar 

  90. Narreddula VR, McKinnon BI, Marlton SJP, Marshall DL, Boase NRB, Poad BLJ, et al. Next-generation derivatization reagents optimized for enhanced product ion formation in photodissociation-mass spectrometry of fatty acids. Analyst. 2021;146(1):156–69.

    Article  CAS  PubMed  Google Scholar 

  91. Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem. 2018;90(3):1915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma X, Zhang W, Li Z, Xia Y, Ouyang Z. Enabling high structural specificity to lipidomics by coupling photochemical derivatization with tandem mass spectrometry. Acc Chem Res. 2021;54(20):3873–82.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao Y, Zhao H, Zhao X, Jia J, Ma Q, Zhang S, et al. Identification and quantitation of C=C location isomers of unsaturated fatty acids by epoxidation reaction and tandem mass spectrometry. Anal Chem. 2017;89(19):10270–8.

    Article  CAS  PubMed  Google Scholar 

  94. Thomas MC, Mitchell TW, Blanksby SJ. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J Am Chem Soc. 2006;128(1):58–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ma X, Xia Y. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew Chem-Int Edit. 2014;53(10):2592–6.

    Article  CAS  Google Scholar 

  96. Zhao J, Xie X, Lin Q, Ma X, Su P, Xia Y. Next-generation Paterno-Buchi reagents for lipid analysis by mass spectrometry. Anal Chem. 2020;92(19):13470–7.

    Article  CAS  PubMed  Google Scholar 

  97. Xu T, Pi Z, Song F, Liu S, Liu Z. Benzophenone used as the photochemical reagent for pinpointing C=C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches. Anal Chim Acta. 2018;1028:32–44.

    Article  CAS  PubMed  Google Scholar 

  98. Waeldchen F, Mohr F, Wagner AH, Heiles S. Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Anal Chem. 2020;92(20):14130–8.

    Article  CAS  Google Scholar 

  99. Feng G, Hao Y, Wu L, Chen S. A visible-light activated 2+2 cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids. Chem Sci. 2020;11(27):7244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao J, Fang M, Xia Y. A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers. J Lipid Res. 2021;62:100110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xia T, Jin X, Zhang D, Wang J, Jian R. Yin H et al Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7cell line. J Lipid Res. 2023;64(8):100410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li Z, Cheng S, Lin Q, Cao W, Yang J, Zhang M, et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat Commun. 2021;12(1):2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, et al. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: total lipid extract from bovine liver as a case study. J Chromatogr A. 2022;1675:463176.

    Article  CAS  PubMed  Google Scholar 

  104. Cerrato A, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Lagana A. Novel Aza-Paterno-Buchi reaction allows pinpointing carbon-carbon double bonds in unsaturated lipids by higher collisional dissociation. Anal Chem. 2022;94(38):13117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feng Y, Chen B, Yu Q, Li L. Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation. Anal Chem. 2019;91(3):1791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kuo T-H, Chung H-H, Chang H-Y, Lin C-W, Wang M-Y, Shen T-L, et al. Deep lipidomics and molecular imaging of unsaturated lipid isomers: a universal strategy initiated by mCPBA epoxidation. Anal Chem. 2019;91(18):11905–15.

    Article  CAS  PubMed  Google Scholar 

  107. Gu T-J, Feng Y, Wang D, Li L. Simultaneous multiplexed quantification and C=C localization of fatty acids with LC-MS/MS using i(s)under-barobaric m(u)under-barltiplex rea(g)under-barents for c(a)under-barrbonyl-containing compound (SUGAR) tags and C=C epoxidation. Anal Chim Acta. 2022;1225.

  108. Feng Y, Lv Y, Gu T-J, Chen B, Li L. Quantitative analysis and structural elucidation of fatty acids by isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tags and m-CPBA epoxidation. Anal Chem. 2022;94(38):13036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2-and 3-hy-droxyl fatty acids by LC-MS. Anal Chim Acta. 2022;1216.

  110. Tu A, Garrard KP, Said N, Muddiman DC. <i>In situ</i> detection of fatty acid C=C positional isomers by coupling on-tissue mCPBA epoxidation with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2021;35(13):e9119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang H, Xu M, Shi X, Liu Y, Li Z, Jagodinsky JC, et al. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem Sci. 2021;12(23):8115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang J, Zhang Z, Jiang T, Zhang Z, Zhang W, Xu W. Rapidly identifying and quantifying of unsaturated lipids with carbon-carbon double bond isomers by photoepoxidation. Talanta. 2023;260:124575.

    Article  CAS  PubMed  Google Scholar 

  113. Hu T, Sun Y, Li H, Du P, Liu L, An Z. Dual derivatization strategy for the comprehensive quantification and double bond location characterization of fatty acids by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1639:461939.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang B, Wang Y, Zhou B-W, Cheng J, Xu Q, Zhang L, et al. Chloramine-T-enabled mass spectrometric analysis of C=C isomers of unsaturated fatty acids and phosphatidylcholines in human thyroids. Anal Chem. 2022;94(16):6216–24.

    Article  CAS  PubMed  Google Scholar 

  115. Armbruster MR, Mostafa ME, Caldwell RN, Grady SF, Arnatt CK, Edwards JL. Isobaric 6-plex and tosyl dual tagging for the determination of positional isomers and quantitation of monounsaturated fatty acids using rapid UHPLC-MS/MS. Analyst. 2023;148(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  116. Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, et al. Identification of carbon-carbon double bond stereochemistry in unsaturated fatty acids by charge-remote fragmentation of fixed-charge derivatives. Anal Chem. 2022;94(46):16180–8.

    Article  CAS  PubMed  Google Scholar 

  117. Koktava M, Valasek J, Bezdekova D, Prysiazhnyi V, Adamova B, Benes P, et al. Metal oxide laser ionization mass spectrometry imaging of fatty acids and their double bond positional isomers. Anal Chem. 2022;94(25):8928–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 22125401 and 81973287) and Natural Science Foundation of Shanxi Province (grant number 202303021211109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Yu Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yuan, J., Yu, B. et al. Sample preparation for fatty acid analysis in biological samples with mass spectrometry-based strategies. Anal Bioanal Chem 416, 2371–2387 (2024). https://doi.org/10.1007/s00216-024-05185-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05185-0

Keywords

Navigation