Skip to main content

Advertisement

Log in

Machine learning-assisted image label-free smartphone platform for rapid segmentation and robust multi-urinalysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study presents a groundbreaking approach for the early detection of chronic kidney disease (CKD) and other urological disorders through an image-label-free, multi-dipstick identification method, eliminating the need for complex machinery, label libraries, or preset coordinates. Our research successfully identified reaction pads on 187 multi-dipsticks, each with 11 pads, leveraging machine learning algorithms trained on human urine data. This technique aims to surpass traditional colourimetric methods and concentration-colour curve fitting, offering more robust and precise community screening and home monitoring capabilities. The developed algorithms enhance the generalizability of machine learning models by extracting primary colours and correcting urine colours on each reaction pad. This method’s cost-effectiveness and portability are significant, as it requires no additional equipment beyond a standard smartphone. The system’s performance rivals professional medical equipment without auxiliary lighting or flash under regular indoor light conditions, effectively managing false positives and negatives across various categories with remarkable accuracy. In a controlled experimental setting, we found that random forest algorithms, based on a Bagging strategy and applied in the HSV colour space, showed optimal results in smartphone-assisted urinalysis. This study also introduces a novel urine colour correction method, significantly improving machine learning model performance. Additionally, ISO parameters were identified as crucial factors influencing the accuracy of smartphone-based urinalysis in the absence of additional lighting or optical configurations, highlighting the potential of this technology in low-resource settings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tummalapalli SL, Shlipak MG, Damster S, Jha V, Malik C, Levin A, et al. Availability and affordability of kidney health laboratory tests around the globe. Am J Nephrol. 2021;51(12):959–65.

    Google Scholar 

  2. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238–52.

    PubMed  Google Scholar 

  3. Yamagata K, Iseki K, Nitta K, Imai H, Iino Y, Matsuo S, et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin Exp Nephrol. 2008;12(1):1–8.

    PubMed  Google Scholar 

  4. Hwang C, Lee WJ, Kim SD, Park S, Kim JH. Recent advances in biosensor technologies for point-of-care urinalysis. Biosens-Basel. 2022;12(11):1020.

    CAS  Google Scholar 

  5. Sritong N, de Medeiros MS, Basing LA, Linnes JC. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. Lab Chip. 2023;23(5):888–912.

    PubMed  CAS  Google Scholar 

  6. van Delft S, Goedhart A, Spigt M, van Pinxteren B, de Wit N, Hopstaken R. Prospective, observational study comparing automated and visual point-of-care urinalysis in general practice. BMJ Open. 2016;6(8):e011230.

    PubMed  PubMed Central  Google Scholar 

  7. Yang Z, Cai G, Zhao J, Feng S. An Optical POCT device for colorimetric detection of urine test strips based on Raspberry Pi imaging. Photonics. 2022;9(10):784.

    Google Scholar 

  8. Kap Ö, Kılıç V, Hardy JG, Horzum N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst. 2021;146(9):2784–806.

    PubMed  ADS  CAS  Google Scholar 

  9. Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, et al. Aspects of point-of-care diagnostics for personalized health wellness. Int J Nanomedicine. 2021;16:383–402.

    PubMed  PubMed Central  Google Scholar 

  10. Abel G. Current status and future prospects of point-of-care testing around the globe. Expert Rev Mol Diagn. 2015;15(7):853–5.

    PubMed  CAS  Google Scholar 

  11. Lewandrowski EL, Yeh S, Baron J, Benjamin Crocker J, Lewandrowski K. Implementation of point-of-care testing in a general internal medicine practice: a confirmation study. Clin Chim Acta Int J Clin Chem. 2017;473:71–4.

    CAS  Google Scholar 

  12. Mahoney E, Kun J, Smieja M, Fang Q. Review-point-of-care urinalysis with emerging sensing and imaging technologies. J Electrochem Soc. 2020;167(3):037518.

    CAS  Google Scholar 

  13. Lei R, Huo R, Mohan C. Current and emerging trends in point-of-care urinalysis tests. Expert Rev Mol Diagn. 2020;20(1):69–84.

    PubMed  CAS  Google Scholar 

  14. Xu Z, Liu Z, Xiao M, Jiang L, Yi C. A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem Eng J. 2020;394:124966.

    CAS  Google Scholar 

  15. Xie M, Chen T, Cai Z, Lei B, Dong C. A digital microfluidic platform coupled with colorimetric loop-mediated isothermal amplification for on-site visual diagnosis of multiple diseases. Lab Chip. 2023;23:2778–88.

    PubMed  CAS  Google Scholar 

  16. Kavuru V, Vu T, Karageorge L, Choudhury D, Senger R, Robertson J. Dipstick analysis of urine chemistry: benefits and limitations of dry chemistry-based assays. Postgrad Med. 2020;132(3):225–33.

    PubMed  CAS  Google Scholar 

  17. Ohta S, Hiraoka R, Hiruta Y, Citterio D. Traffic light type paper-based analytical device for intuitive and semi-quantitative naked-eye signal readout. Lab Chip. 2022;22(4):717–26.

    PubMed  CAS  Google Scholar 

  18. Liu G, Hu N, Ma Z, Li R. A portable analyzer based on a novel optical structure for urine dry-chemistry analysis. J Instrum. 2018;13:T07002.

    Google Scholar 

  19. Liu G, Ma Z. Study on a novel portable urine analyzer based on optical fiber bundles. Measurement. 2018;130:412–21.

    ADS  Google Scholar 

  20. Woodstock TK, Karlicek RF. RGB Color sensors for occupant detection: an alternative to PIR sensors. Ieee Sens J. 2020;20(20):12364–73.

    ADS  Google Scholar 

  21. de Carvalho OG, Machado CCS, Inacio DK, da SilveiraPetruci JF, Silva SG. RGB color sensor for colorimetric determinations: evaluation and quantitative analysis of colored liquid samples. Talanta. 2022;241:123244.

    Google Scholar 

  22. Ra M, Muhammad MS, Lim C, Han S, Jung C, Kim WY. Smartphone-based point-of-care urinalysis under variable illumination. Ieee J Transl Eng Health Med. 2018;6:2800111.

    PubMed  Google Scholar 

  23. Burke AE, Thaler KM, Geva M, Adiri Y. Feasibility and acceptability of home use of a smartphone-based urine testing application among women in prenatal care. Am J Obstet Gynecol [Internet]. 2019 Nov 1;221(5):527–8, [cited 2023 Jun 1]. Available from: https://www.ajog.org/article/S0002-9378(19)30779-3/fulltext.

  24. Balbach S, Jiang N, Moreddu R, Dong X, Kurz W, Wang C, et al. Smartphone-based colorimetric detection system for portable health tracking. Anal Methods. 2021;13(38):4361–9.

    PubMed  CAS  Google Scholar 

  25. Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. Sens Bio-Sens Res. 2021;32:100404.

    Google Scholar 

  26. Biswas SK, Chatterjee S, Laha S, Pakira V, Som NK, Saha S, et al. Instrument-free single-step direct estimation of the plasma glucose level from one drop of blood using smartphone-interfaced analytics on a paper strip. Lab Chip. 2022;22(23):4666–79.

    PubMed  CAS  Google Scholar 

  27. Kim NK, Cho YS, Chil KS. Effect of illuminance on color-based analysis of diabetes-related urine fusion analytes on dipstick using a smartphone camera. J Korea Converg Soc. 2021;12(5):93–9.

    CAS  Google Scholar 

  28. Woodburn EV, Long KD, Cunningham BT, Fellow IEEE. Analysis of paper-based colorimetric assays with a smartphone spectrometer. IEEE Sens J. 2019;19(2):508–14.

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Dong G, Gen L, Jia-qi M, Ya-jing S. A smartphone-based calibration-free portable urinalysis device. J Cent South Univ. 2021;28(12):3829–37.

    Google Scholar 

  30. Tong L, Hutcheson JD. A surface-based calibration approach to enable dynamic and accurate quantification of colorimetric assay systems. Anal Methods. 2021;13(37):4290–7.

    PubMed  CAS  Google Scholar 

  31. Qin F, Yuan J. Research status and trend of artificial intelligence in the diagnosis of urinary diseases. J Biomed Eng. 2020;37:230–5.

    Google Scholar 

  32. Yoo WS, Kim JG, Kang K, Yoo Y. Development of static and dynamic colorimetric analysis techniques using image sensors and novel image processing software for chemical, biological and medical applications. Technologies. 2023;11(1):23.

    Google Scholar 

  33. Duan S, Cai T, Zhu J, Yang X, Lim EG, Huang K, et al. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays. Anal Chim Acta. 2023;1248:340868.

    PubMed  CAS  Google Scholar 

  34. Solmaz ME, Mutlu AY, Alankus G, Kılıç V, Bayram A, Horzum N. Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sens Actuators B Chem. 2018;255:1967–73.

    CAS  Google Scholar 

  35. Kim SC, Cho YS. Predictive system implementation to improve the accuracy of urine self-diagnosis with smartphones: application of a confusion matrix-based learning model through RGB semiquantitative analysis. Sensors. 2022;22(14):5445.

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. Smith GT, Dwork N, Khan SA, Millet M, Magar K, Javanmard M, et al. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip. 2016;16(11):2069–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang R, Cheng W, Chen X, Qian Q, Zhang Q, Pan Y, et al. Color space transformation-based smartphone algorithm for colorimetric urinalysis. ACS Omega. 2018;3(9):12141–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Xiang J, Zhang Y, Cai Z, Wang W, Wang C. A 3D printed centrifugal microfluidic platform for automated colorimetric urinalysis. Microsyst Technol-Micro- Nanosyst-Inf Storage Process Syst. 2020;26(2):291–9.

    CAS  Google Scholar 

  39. Rahman MM, Uddin MJ, Hong JH, Bhuiyan NH, Shim JS. Lab-in-a-cup (LiC): an autonomous fluidic device for daily urinalysis using smartphone. Sens Actuators B-Chem. 2022;355:131336.

    CAS  Google Scholar 

  40. Tania MH, Lwin KT, Shabut AM, Najlah M, Chin J, Hossain MA. Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays. Expert Syst Appl. 2020;139:112843.

    Google Scholar 

  41. Flaucher M, Nissen M, Jaeger KM, Titzmann A, Pontones C, Huebner H, et al. Smartphone-based colorimetric analysis of urine test strips for at-home prenatal care. Ieee J Transl Eng Health Med. 2022;10:2800109.

    PubMed  Google Scholar 

  42. Ning Q, Zheng W, Xu H, Zhu A, Li T, Cheng Y, et al. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Anal Bioanal Chem. 2022;414(13):3959–70.

    PubMed  CAS  Google Scholar 

  43. Thakur R, Maheshwari P, Datta SK, Dubey SK, Shakher C. Machine learning-based rapid diagnostic-test reader for albuminuria using smartphone. Ieee Sens J. 2021;21(13):14011–26.

    ADS  Google Scholar 

  44. Kibria IE, Ali H, Khan SA. Smartphone-based point-of-care urinalysis assessment. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:3374–7.

    PubMed  Google Scholar 

  45. Geng Z, Miao Y, Zhang G, Liang X. Colorimetric biosensor based on smartphone: state-of-art. Sens Actuators -Phys. 2023;349:114056.

    CAS  Google Scholar 

  46. Mutlu AY, Kılıç V, Özdemir GK, Bayram A, Horzum N, Solmaz ME. Smartphone-based colorimetric detection via machine learning. Analyst. 2017;142(13):2434–41.

    PubMed  ADS  CAS  Google Scholar 

  47. Thakur R, Maheshwari P, Datta SK, Dubey SK. Smartphone-based, automated detection of urine albumin using deep learning approach. Measurement. 2022;194: 110948.

    Google Scholar 

  48. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment Anything. 2023. arXiv:230402643.

  49. Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Medica. 2014;24(1):89–104.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Yanming He and Xuanhe Zhao for figuring suggestions and Sijie Chen and Yuhao Zhang for algorithmic guidance.

Funding

The authors would like to acknowledge the financial support by Shanghai Engineering Research Centre of Interventional Medical Device (No.18DZ2250900), the financial support by National Natural Science Foundation of China (No.62373253), and the financial support from the School of Health Science and Engineering, University of Shanghai for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongguo Yan or Xiaoli Wang.

Ethics declarations

Ethical statement

The study was approved by the Medical Ethics Committee of Hainan Third People’s Hospital and underwent an ethical review.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16932 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Yan, R., Gui, X. et al. Machine learning-assisted image label-free smartphone platform for rapid segmentation and robust multi-urinalysis. Anal Bioanal Chem 416, 1443–1455 (2024). https://doi.org/10.1007/s00216-024-05147-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05147-6

Keywords

Navigation