Skip to main content
Log in

Differentiation of steroid isomers by steroid analogues adducted trapped ion mobility spectrometry-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ma L, Yates SR. A review on structural elucidation of metabolites of environmental steroid hormones via liquid chromatography-mass spectrometry. Trends Anal Chem. 2018;109:142–53. https://doi.org/10.1016/j.trac.2018.10.007.

    Article  CAS  Google Scholar 

  2. Heck AL, Crestani CC, Fernandez-Guasti A, Larco DO, Mayerhofer A, Roselli CE. Neuropeptide and steroid hormone mediators of neuroendocrine regulation. J Neuroendocrinol. 2018;30: e12599. https://doi.org/10.1111/jne.12599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spangenburg EE, Geiger PC, Leinwand LA, Lowe DA. Regulation of physiological and metabolic function of muscle by female sex steroids. Med Sci Sports Exerc. 2012;44:1653–62. https://doi.org/10.1249/MSS.0b013e31825871fa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Storbeck K-H, Schiffer L, Baranowski ES, Chortis V, Prete A, Barnard L, Gilligan LC, Taylor AE, Idkowiak J, Arlt W, Shackleton CHL. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr Rev. 2019;40(6):1605–25. https://doi.org/10.1210/er.2018-00262.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Griffiths WJ, Wang Y. Sterolomics in biology, biochemistry, medicine. Trends Anal Chem. 2019;120: 115280. https://doi.org/10.1016/j.trac.2018.10.016.

    Article  CAS  Google Scholar 

  6. Ahn CH, Lee C, Shim J, Kong SH, Kim S-J, Kim YH, Lee KE, Shin CS, Kim JH, Choi MH. Metabolic changes in serum steroids for diagnosing and subtyping Cushing’s syndrome. J Steroid Biochem Mol Biol. 2021;210: 105856. https://doi.org/10.1016/j.jsbmb.2021.105856.

    Article  CAS  PubMed  Google Scholar 

  7. Auer MK, Krumbholz A, Bidlingmaier M, Thieme D, Reisch N. Steroid 17-hydroxyprogesterone in hair is a potential long-term biomarker of androgen control in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Neuroendocrinology. 2020;110:938–49. https://doi.org/10.1159/000504672.

    Article  CAS  PubMed  Google Scholar 

  8. Olesti E, Boccard J, Visconti G, Gonzalez-Ruiz V, Rudaz S. From a single steroid to the steroidome: trends and analytical challenges. J Steroid Biochem Mol Biol. 2021;206: 105797. https://doi.org/10.1016/j.jsbmb.2020.105797.

    Article  CAS  PubMed  Google Scholar 

  9. Rister AL, Dodds ED. Steroid analysis by ion mobility spectrometry. Steroids. 2020;153: 108531. https://doi.org/10.1016/j.steroids.2019.108531.

    Article  CAS  PubMed  Google Scholar 

  10. Hu J, Zhang Z, Shen W-J, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab. 2010;7:47. https://doi.org/10.1186/1743-7075-7-47.

    Article  CAS  Google Scholar 

  11. Liao H-Y, Xiao X, Peng R, Le J, Wang H-B, Wang S-T. Rapid derivatization of phenolic and oxime hydroxyl with isonicotinoyl chloride under aqueous conditions and its application in LC-MS/MS profiling multiclass steroids. Anal Chem. 2022;94:17980–7. https://doi.org/10.1021/acs.analchem.2c04151.

    Article  CAS  PubMed  Google Scholar 

  12. Qin Q, Feng D, Hu C, Wang B, Chang M, Liu X, Yin P, Shi X, Xu G. Parallel derivatization strategy coupled with liquid chromatography-mass spectrometry for broad coverage of steroid hormones. J Chromatogr A. 2020;1614: 460709. https://doi.org/10.1016/j.chroma.2019.460709.

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion mobility mass spectrometry for the separation and characterization of small molecules. Anal Chem. 2023;95:134–51. https://doi.org/10.1021/acs.analchem.2c02866.

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez-Mesa M, Escourrou A, Monteau F, Le Bizec B, Dervilly-Pinel G. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. Trends Anal Chem. 2017;94:39–53. https://doi.org/10.1016/j.trac.2017.07.006.

    Article  CAS  Google Scholar 

  15. Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev. 2013;32:43–71. https://doi.org/10.1002/mas.21349.

    Article  CAS  PubMed  Google Scholar 

  16. Ross DH, Seguin RP, Xu L. Characterization of the impact of drug metabolism on the gas-phase structures of drugs using ion mobility-mass spectrometry. Anal Chem. 2019;91:14498–507. https://doi.org/10.1021/acs.analchem.9b03292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chouinard CD, Cruzeiro VWD, Roitberg AE, Yost RA. Experimental and theoretical investigation of sodiated multimers of steroid epimers with ion mobility-mass spectrometry. J Am Soc Mass Spectrom. 2017;28:323–31. https://doi.org/10.1007/s13361-016-1525-7.

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez-Mesa M, D’Atri V, Barknowitz G, Fanuel M, Pezzatti J, Dreolin N, Ropartz D, Monteau F, Vigneau E, Rudaz S, Stead S, Rogniaux H, Guillarme D, Dervilly G, Le Bizec B. Interlaboratory and interplatform study of steroids collision cross section by traveling wave ion mobility spectrometry. Anal Chem. 2020;92:5013–22. https://doi.org/10.1021/acs.analchem.9b05247.

    Article  CAS  PubMed  Google Scholar 

  19. Mackay CLL, Soltwisch J, Heijs B, Smith KW, Cruickshank FL, Nyhuis A, Dreisewerd K, Cobice D. Spatial distribution of isobaric androgens in target tissues using chemical derivatization and MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument. RSC Adv. 2021;11:33916–25. https://doi.org/10.1039/d1ra06086d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahonen L, Fasciotti M, afGennas GB, Kotiaho T, Daroda RJ, Eberlin M, Kostiainen R. Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A. 2013;1310:133–7. https://doi.org/10.1016/j.chroma.2013.08.056.

    Article  CAS  PubMed  Google Scholar 

  21. Rister AL, Martin TL, Dodds ED. Application of group I metal adduction to the separation of steroids by traveling wave ion mobility spectrometry. J Am Soc Mass Spectrom. 2019;30:248–55. https://doi.org/10.1007/s13361-018-2085-9.

    Article  CAS  PubMed  Google Scholar 

  22. Rister AL, Martin TL, Dodds ED. Formation of multimeric steroid metal adducts and implications for isomer mixture separation by traveling wave ion mobility spectrometry. J Mass Spectrom. 2019;54(5):429–36. https://doi.org/10.1002/jms.4350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White PC. Neonatal screening for congenital adrenal hyperplasia. Nat Rev Endocrinol. 2009;5:490–8. https://doi.org/10.1038/nrendo.2009.148.

    Article  CAS  PubMed  Google Scholar 

  24. Kaabia Z, Laparre J, Cesbron N, Le Bizec B, Dervilly-Pinel G. Comprehensive steroid profiling by liquid chromatography coupled to high it resolution mass spectrometry. J Steroid Biochem Mol. 2018;183:106–15. https://doi.org/10.1016/j.jsbmb.2018.06.003.

    Article  CAS  Google Scholar 

  25. Dodds JN, May JC, McLean JA. Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal Chem. 2017;89(22):12176–84. https://doi.org/10.1021/acs.analchem.7b02827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Wu F, Xu F, Liu Y, Ding C-F. Identification of bi-2-naphthol and its phosphate derivatives complexed with cyclodextrin and metal ions using trapped ion mobility spectrometry. Anal Chem. 2021;93:15096–104. https://doi.org/10.1021/acs.analchem.1c03378.

    Article  CAS  PubMed  Google Scholar 

  27. Fouque DJD, Lartia R, Maroto A, Memboeuf A. Quantification of intramolecular click chemistry modified synthetic peptide isomers in mixtures using tandem mass spectrometry and the survival yield technique. Anal Bioanal Chem. 2018;410(23):5765–77. https://doi.org/10.1007/s00216-018-1258-5.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22204085) and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23B050005.

Author information

Authors and Affiliations

Authors

Contributions

Yang Li: data curation; visualization; investigation; methodology; writing original draft. Yujiao Qin: methodology; investigation. Songchang Wei: methodology; investigation. Ling Ling: resources; funding acquisition; supervision; conceptualization; writing—review and editing. Chuan-Fan Ding: supervision; resources; funding acquisition; writing—review and editing.

Corresponding authors

Correspondence to Ling Ling or Chuan-Fan Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14582 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qin, Y., Wei, S. et al. Differentiation of steroid isomers by steroid analogues adducted trapped ion mobility spectrometry-mass spectrometry. Anal Bioanal Chem 416, 313–319 (2024). https://doi.org/10.1007/s00216-023-05019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05019-5

Keywords

Navigation