Skip to main content
Log in

Exploring visible light enhancement for sensing: an azo-dye decorated gold nanoantenna monitored with a smartphone app

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Optical sensors can be used to detect a variety of substances ranging from diagnostics on biological samples to the detection of hazardous substances. This type of sensor can be a valuable alternative to more complex analytical techniques, being fast and requiring little to no sample preparation at the expense of the reusability of the device. Here, we show the construction of a colorimetric nanoantenna sensor using gold nanoparticles (AuNPs) embedded in poly(vinyl alcohol) (PVA) and decorated with the methyl orange (MO) azo dye (AuNP@PVA@MO) that is potentially reusable. As a proof of concept, we apply this sensor to detect H2O2 both visually and using a smartphone-based app for colorimetric measurements. Furthermore, through chemometric modeling of the app data, we can reach a detection limit of 0.0058% (1.70 mmolL−1) of H2O2 while being able to visually detect changes on the sensor. Our results reinforce the combination of nanoantenna sensors with chemometric tools as guidelines for sensor design. Finally, this approach can lead to novel sensors allowing for the visual detection of analytes in complex samples and their quantification using colorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Ru P, Eric C, Etchegoin. Principles of surface-enhanced Raman spectroscopy, 1st ed; 2009.

  2. Mamián-López MB, Paschoal VH. “Vibrational spectroscopy in bioanalysis”, in Tools and Trends in Bioanalytical Chemistry. Cham: Springer International Publishing; 2022. p. 135–66.

    Book  Google Scholar 

  3. Gorbachevskii MV, Kopitsyn DS, Kotelev MS, Ivanov EV, Vinokurov VA, Novikov AA. Amplification of surface-enhanced Raman scattering by the oxidation of capping agents on gold nanoparticles. RSC Adv. 2018;8(34):19051–7. https://doi.org/10.1039/C8RA00417J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang R, Zhong Q, Liu Y, Ji J, Liu B. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites. Talanta. 2022;243:123382. https://doi.org/10.1016/j.talanta.2022.123382.

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst. 2015;140(2):386–406. https://doi.org/10.1039/C4AN01079E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elhani S, Ishitobi H, Inouye Y, Ono A, Hayashi S, Sekkat Z. Surface enhanced visible absorption of dye molecules in the near-field of gold nanoparticles. Sci Rep. 2020;10(1):3913. https://doi.org/10.1038/s41598-020-60839-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koushki E. Effect of conjugation with organic molecules on the surface plasmon resonance of gold nanoparticles and application in optical biosensing. RSC Adv. 2021;11(38):23390–9. https://doi.org/10.1039/D1RA01842F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos D, Grasseschi D. Nanomateriais plasmônicos: parte II. Química de coordenação de superfície e sua aplicação em sensores e catalisadores. Quim Nova. 2002. https://doi.org/10.21577/0100-4042.20170629.

  9. Scaiano JC, Stamplecoskie K. Can surface plasmon fields provide a new way to photosensitize organic photoreactions? From designer nanoparticles to custom applications. J Phys Chem Lett. 2013;4(7):1177–87. https://doi.org/10.1021/jz400002a.

    Article  CAS  PubMed  Google Scholar 

  10. Peng L, Li BL, Zhou CW, Li NB, Setyawati MI, Zou HL. ‘Naked-eye’ recognition: emerging gold nano-family for visual sensing. Appl Mater Today. 2018;11:166–88. https://doi.org/10.1016/j.apmt.2018.02.007.

    Article  Google Scholar 

  11. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96(11):113002. https://doi.org/10.1103/PhysRevLett.96.113002.

    Article  CAS  PubMed  Google Scholar 

  12. Nicolas MF, Marin JH, Paganoto GT, Fernandes RF, Temperini MLA. Surface-enhanced Raman and surface-enhanced fluorescence of charged dyes based on alginate silver nanoparticles and its calcium alginate hydrogel beads. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;276:121211. https://doi.org/10.1016/j.saa.2022.121211.

    Article  CAS  Google Scholar 

  13. Narband N, Uppal M, Dunnill CW, Hyett G, Wilson M, Parkin IP. The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption. Phys Chem Chem Phys. 2009;11(44):10513. https://doi.org/10.1039/b909714g.

    Article  CAS  PubMed  Google Scholar 

  14. Darby BL, Auguié B, Meyer M, Pantoja AE, Le Ru EC. Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nat Photonics. 2016;10(1):40–5. https://doi.org/10.1038/nphoton.2015.205.

    Article  CAS  Google Scholar 

  15. Tabner BJ, Turnbull S, El-Agnaf OMA, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from Aβ and α-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease 1,2 1This article is part of a series of reviews on “Causes and consequences of oxidative Str. Free Radic Biol Med. 2002;32(11):1076–83. https://doi.org/10.1016/S0891-5849(02)00801-8.

    Article  CAS  PubMed  Google Scholar 

  16. Semwal V, Gupta BD. Highly selective SPR based fiber optic sensor for the detection of hydrogen peroxide. Sensors Actuators B Chem. 2021;329:129062. https://doi.org/10.1016/j.snb.2020.129062.

    Article  CAS  Google Scholar 

  17. Zhang X, et al. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. Biomed Opt Express. 2018;9(4):1735. https://doi.org/10.1364/BOE.9.001735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivero PJ, Ibañez E, Goicoechea J, Urrutia A, Matias IR, Arregui FJ. A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sensors Actuators B Chem. 2017;251:624–31. https://doi.org/10.1016/j.snb.2017.05.110.

    Article  CAS  Google Scholar 

  19. Wang X, Chang T-W, Lin G, Gartia MR, Liu GL. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal Chem. 2017;89(1):611–5. https://doi.org/10.1021/acs.analchem.6b02484.

    Article  CAS  PubMed  Google Scholar 

  20. Aydindogan E, Ceylan AE, Timur S. Paper-based colorimetric spot test utilizing smartphone sensing for detection of biomarkers. Talanta. 2020;208:120446. https://doi.org/10.1016/j.talanta.2019.120446.

    Article  CAS  PubMed  Google Scholar 

  21. Helfer GA, Magnus VS, Böck FC, Teichmann A, Ferrão MF, da Costa AB. PhotoMetrix: an application for univariate calibration and principal components analysis using colorimetry on mobile devices. J Braz Chem Soc. 2016. https://doi.org/10.5935/0103-5053.20160182.

    Article  Google Scholar 

  22. Rosa T, et al. Redgim como aplicativo de smartphone para aplicações quimiométricas por meio de análise de imagens: um uso em pls. Quim Nova. 2022. https://doi.org/10.21577/0100-4042.20170861.

    Article  Google Scholar 

  23. Brereton RG. Chemometrics: data analysis for the laboratory and chemical plant. Wiley; 2003.

  24. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–5. https://doi.org/10.1021/j100214a025.

    Article  CAS  Google Scholar 

  25. Amourizi F, Dashtian K, Ghaedi M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. Polyhedron. 2020;176:114278. https://doi.org/10.1016/j.poly.2019.114278.

    Article  CAS  Google Scholar 

  26. Ferreira MMC. Quimiometria: conceitos, métodos e aplicações. Editora da Unicamp; 2015.

  27. Si MZ, Kang YP, Zhang ZG. Surface-enhanced Raman scattering (SERS) spectra of methyl orange in Ag colloids prepared by electrolysis method. Appl Surf Sci. 2009;255(11):6007–10. https://doi.org/10.1016/j.apsusc.2009.01.055.

    Article  CAS  Google Scholar 

  28. Drašinac N, Erjavec B, Dražić G, Pintar A. Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catal Today. 2017;280:155–64. https://doi.org/10.1016/j.cattod.2016.06.038.

    Article  CAS  Google Scholar 

  29. Rodrigues TS, da Silva AGM, de Moura ABL, Freitas IG, Camargo PHC. Rational design of plasmonic catalysts: matching the surface plasmon resonance with lamp emission spectra for improved performance in AgAu nanorings. RSC Adv. 2016;6(67):62286–90. https://doi.org/10.1039/C6RA11362A.

    Article  CAS  Google Scholar 

  30. Gómez-Obando VA, García-Mora A-M, Basante JS, Hidalgo A, Galeano L-A. CWPO degradation of methyl orange at circumneutral pH: multi-response statistical optimization, main intermediates and by-products. Front Chem 7;2019. https://doi.org/10.3389/fchem.2019.00772

Download references

Acknowledgements

We are also thankful to professors M. L. A. Temperini e V. H. Paschoal (USP, Brazil) for their valuable advice in this work.

Funding

This work was supported by the Brazilian agency CNPq (Grant 405087/2021–7) and by the Scientific Initiation program at UFABC. The authors are grateful to the Multiuser Central Facilities at UFABC for the experimental support and to the Laboratory of Molecular Spectroscopy of the Institute of Chemistry of the University of São Paulo (USP, Brazil), where the Raman/SERS spectra were measured (FAPESP, grant 2016/21070–5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Benicia Mamián-López.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1541 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, K.N.O., Mamián-López, M.B. Exploring visible light enhancement for sensing: an azo-dye decorated gold nanoantenna monitored with a smartphone app. Anal Bioanal Chem 415, 4459–4466 (2023). https://doi.org/10.1007/s00216-023-04632-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04632-8

Keywords

Navigation