Skip to main content
Log in

Coupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organisms

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Isotope ratios of methylmercury (MeHg) within organisms can be used to identify sources of MeHg that have accumulated in food webs, but these isotopic compositions are masked in organisms at lower trophic levels by the presence of inorganic mercury (iHg). To facilitate measurement of MeHg isotope ratios in organisms, we developed a method of extracting and isolating MeHg from fish and aquatic invertebrates for compound-specific isotopic analysis involving nitric acid digestion, batch anion-exchange resin separation, and pre-concentration by purge and trap. Recovery of MeHg was quantified after each step in the procedure, and the average cumulative recovery of MeHg was 93.4 ± 2.9% (1 SD, n = 28) for biological reference materials and natural biota samples and 96.9 ± 1.8% (1 SD, n = 5) for aqueous MeHgCl standards. The amount of iHg impurities was also quantified after each step, and the average MeHg purity was 97.8 ± 4.3% (1 SD, n = 28) across all reference materials and natural biota samples after the final separation step. Measured MeHg isotopic compositions of reference materials agreed with literature values obtained using other MeHg separation techniques, and MeHg isotope ratios of aqueous standards, reference materials, and natural biota samples were reproducible. On average, the reproducibility associated with reference material process replicates (2 SD) was 0.10‰ for δ202MeHg and 0.04‰ for Δ199MeHg. This new method provides a streamlined, reliable technique that utilizes a single sample aliquot for MeHg concentration and isotopic analysis. This promotes a tight coupling between MeHg concentration, %MeHg, and Hg isotopic composition, which may be especially beneficial for studying complex food webs with multiple isotopically distinct sources of iHg and/or MeHg.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Selin NE. Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour. 2009;34:43–63.

    Article  Google Scholar 

  2. Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: a critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.

    Article  CAS  Google Scholar 

  3. Barkay T, Gu B. Demethylation–the other side of the mercury methylation coin: a critical review. ACS Environ Au. 2022;2:77–97.

    Article  CAS  Google Scholar 

  4. Blum JD, Sherman LS, Johnson MW. Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci. 2014;42:249–69.

    Article  CAS  Google Scholar 

  5. Stetson SJ, Gray JE, Wanty RB, Macalady DL. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury. Environ Sci Technol. 2009;43:7331–6.

    Article  CAS  Google Scholar 

  6. Wiederhold JG, Smith RS, Siebner H, Jew AD, Brown GE Jr, Bourdon B, et al. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg Mine. Environ Sci Technol. 2013;47:6137–45.

    Article  CAS  Google Scholar 

  7. Yin R, Feng X, Wang J, Bao Z, Yu B, Chen J. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chem Geol. 2013;336:80–6.

    Article  CAS  Google Scholar 

  8. Wiederhold JG, Skyllberg U, Drott A, Jiskra M, Jonsson S, Björn E, et al. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environ Sci Technol. 2015;49:177–85.

    Article  CAS  Google Scholar 

  9. Brocza FM, Biester H, Richard J-H, Kraemer SM, Wiederhold JG. Mercury isotope fractionation in the subsurface of a Hg(II) chloride-contaminated industrial legacy site. Environ Sci Technol. 2019;53:7296–305.

    Article  CAS  Google Scholar 

  10. Grigg ARC, Kretzschmar R, Gilli RS, Wiederhold JG. Mercury isotope signatures of digests and sequential extracts from industrially contaminated soils and sediments. Sci Total Environ. 2018;636:1344–54.

    Article  CAS  Google Scholar 

  11. Crowther ER, Demers JD, Blum JD, Brooks SC, Johnson MW. Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury. Environ Sci: Process Impacts. 2021;23:756–75.

    CAS  Google Scholar 

  12. Huang S, Zhao Y, Lv S, Wang W, Wang W, Zhang Y, et al. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions. Chemosphere. 2021;272:129716.

  13. McLagan DS, Schwab L, Wiederhold JG, Chen L, Pietrucha J, Kraemer SM, et al. Demystifying mercury geochemistry in contaminated soil-groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses. Environ Sci: Process Impacts. 2022;24:1406–29.

    CAS  Google Scholar 

  14. Epov VN, Rodríguez-González P, Sonke JE, Tessier E, Amouroux D, Maurice Bourgoin L, et al. Simultaneous determination of species-specific isotopic composition of Hg by gas chromatography coupled to multicollector ICPMS. Anal Chem. 2008;80:3530–8.

    Article  CAS  Google Scholar 

  15. Masbou J, Point D, Sonke JE. Application of a selective extraction method for methylmercury compound specific stable isotope analysis (MeHg-CSIA) in biological materials. J Anal At Spectrom. 2013;28:1620–8.

    Article  CAS  Google Scholar 

  16. Janssen SE, Johnson MW, Blum JD, Barkay T, Reinfelder JR. Separation of monomethylmercury from estuarine sediments for mercury isotope analysis. Chem Geol. 2015;411:19–25.

    Article  CAS  Google Scholar 

  17. Li P, Du B, Maurice L, Laffont L, Lagane C, Point D, et al. Mercury isotope signatures of methylmercury in rice samples from the Wanshan mercury mining area, China: environmental implications. Environ Sci Technol. 2017;51:12321–8.

    Article  CAS  Google Scholar 

  18. Bouchet S, Bérail S, Amouroux D. Hg compound-specific isotope analysis at ultratrace levels using an on line gas chromatographic preconcentration and separation strategy coupled to multicollector-inductively coupled plasma mass spectrometry. Anal Chem. 2018;90:7809–16.

    Article  CAS  Google Scholar 

  19. Entwisle J, Malinovsky D, Dunn PJH, Goenaga-Infante H. Hg isotope ratio measurements of methylmercury in fish tissues using HPLC with off line cold vapour generation MC-ICPMS. J Anal At Spectrom. 2018;33:1645–54.

    Article  CAS  Google Scholar 

  20. Qin C, Chen M, Yan H, Shang L, Yao H, Li P, et al. Compound specific stable isotope determination of methylmercury in contaminated soil. Sci Total Environ. 2018;644:406–12.

    Article  CAS  Google Scholar 

  21. Qin C, Du B, Yin R, Meng B, Fu X, Li P, et al. Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem. Environ Sci Technol. 2020;54:14334–42.

    Article  CAS  Google Scholar 

  22. Rosera TJ, Janssen SE, Tate MT, Lepak RF, Ogorek JM, DeWild JF, et al. Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices. Anal Bioanal Chem. 2020;412:681–90.

    Article  CAS  Google Scholar 

  23. Manceau A, Brossier R, Janssen SE, Rosera TJ, Krabbenhoft DP, Cherel Y, et al. Mercury isotope fractionation by internal demethylation and biomineralization reactions in seabirds: Implications for environmental mercury science. Environ Sci Technol. 2021;55:13942–52.

    Article  CAS  Google Scholar 

  24. Poulin BA, Janssen SE, Rosera TJ, Krabbenhoft DP, Eagles-Smith CA, Ackerman JT, et al. Isotope fractionation from in vivo methylmercury detoxification in waterbirds. ACS Earth Space Chem. 2021;5:990–7.

    Article  CAS  Google Scholar 

  25. Yang S, Wang B, Qin C, Yin R, Li P, Liu J, et al. Compound-specific stable isotope analysis provides new insights for tracking human monomethylmercury exposure sources. Environ Sci Technol. 2021;55:12493–503.

    Article  CAS  Google Scholar 

  26. Zhang W, Sun G, Yin R, Feng X, Yao Z, Fu X, et al. Separation of methylmercury from biological samples for stable isotopic analysis. J Anal At Spectrom. 2021;36:2415–22.

    Article  CAS  Google Scholar 

  27. Rosera TJ, Janssen SE, Tate MT, Lepak RF, Ogorek JM, DeWild JF, et al. Methylmercury stable isotopes: new insights on assessing aquatic food web bioaccumulation in legacy impacted regions. ACS EST Water. 2022;2:701–9.

    Article  CAS  Google Scholar 

  28. Tsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH. Sources and transfers of methylmercury in adjacent river and forest food webs. Environ Sci Technol. 2012;46:10957–64.

    Article  CAS  Google Scholar 

  29. Kwon SY, Blum JD, Chen CY, Meattey DE, Mason RP. Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the northeastern U.S. Environ Sci Technol. 2014;48:10089–97.

    Article  CAS  Google Scholar 

  30. Kwon SY, Blum JD, Nadelhoffer KJ, Timothy Dvonch J, Tsui MT-K. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web. Sci Total Environ. 2015;532:220–9.

    Article  CAS  Google Scholar 

  31. Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: a review focusing on analytical method, fractionation characteristics, and its application. Sci Total Environ. 2022;841:156558.

  32. Stoichev T, Rodríguez Martín-Doimeadios RC, Amouroux D, Molenat N, Donard OFX. Application of cryofocusing hydride generation and atomic fluorescence detection for dissolved mercury species determination in natural water samples. J Environ Monit. 2002;4:517–21.

    Article  CAS  Google Scholar 

  33. Magos L. Selective atomic-adsorption determination of inorganic mercury and methylmercury in undigested bioogical samples. Analyst. 1971;96:847–53.

    Article  CAS  Google Scholar 

  34. Gao Y, Liu R, Yang L. Application of chemical vapor generation in ICP-MS: a review. Chin Sci Bull. 2013;58:1980–91.

    Article  CAS  Google Scholar 

  35. Balarama Krishna MV, Karunasagar D. Robust ultrasound assisted extraction approach using dilute TMAH solutions for the speciation of mercury in fish and plant materials by cold vapor atomic absorption spectrometry (CVAAS). Anal Methods. 2015;7:1997–2005.

    Article  Google Scholar 

  36. Li D, Li Y, Wang X. Study on the simultaneous reduction of methylmercury by SnCl2 when analyzing inorganic Hg in aqueous samples. J Environ Sci (China). 2018;68:177–84.

    Article  CAS  Google Scholar 

  37. Krupp EM, Donard OFX. Isotope ratios on transient signals with GC-MC-ICP-MS. Int J Mass Spectrom. 2005;242:233–42.

    Article  CAS  Google Scholar 

  38. Dzurko M, Foucher D, Hintelmann H. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS). Anal Bioanal Chem. 2009;393:345–55.

    Article  CAS  Google Scholar 

  39. Rodríguez-González P, Epov VN, Bridou R, Tessier E, Guyoneaud R, Monperrus M, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions. Environ Sci Technol. 2009;43:9183–8.

    Article  Google Scholar 

  40. Epov VN, Bérail S, Jiménez-Moreno M, Perrot V, Pecheyran C, Amouroux D, et al. Approach to measure isotopic ratios in species using multicollector-ICPMS coupled with chromatography. Anal Chem. 2010;82:5652–62.

    Article  CAS  Google Scholar 

  41. Yang L, Sturgeon RE. Isotopic fractionation of mercury induced by reduction and ethylation. Anal Bioanal Chem. 2009;393:377–85.

    Article  CAS  Google Scholar 

  42. Malinovsky D, Latruwe K, Moens L, Vanhaecke F. Experimental study of mass-independence of Hg isotope fractionation during photodecomposition of dissolved methylmercury. J Anal At Spectrom. 2010;25:950–6.

    Article  CAS  Google Scholar 

  43. Malinovsky D, Vanhaecke F. Mercury isotope fractionation during abiotic transmethylation reactions. Int J Mass Spectrom. 2011;307:214–24.

    Article  CAS  Google Scholar 

  44. Bloom NS, Colman JA, Barber L. Artifact formation of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius J Anal Chem. 1997;358:371–7.

    Article  CAS  Google Scholar 

  45. Hintelmann H, Falter R, Ilgen G, Evans RD. Determination of artifactual formation of monomethylmercury (CH3Hg+) in environmental samples using stable Hg2+ isotopes with ICP-MS detection: calculation of contents applying species specific isotope addition. Fresenius J Anal Chem. 1997;358:363–70.

    Article  CAS  Google Scholar 

  46. Demers JD, Blum JD, Zak DR. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem Cycles. 2013;27:222–38.

    Article  CAS  Google Scholar 

  47. U.S. EPA. Method 1631, Revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water; 2002. Report No.: EPA-821-R-02-019.

  48. Hammerschmidt CR, Fitzgerald WF. Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination. Environ Sci Technol. 2005;39:3034–9.

    Article  CAS  Google Scholar 

  49. Brooks Rand Instruments. Application note: nitric acid digestion of biological tissue for methylmercury analysis. 2013.

  50. U.S. EPA. Method 1630, methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Washington, D.C.: U.S. Environmental Protection Agency Office of Water; 2001. Report No.: EPA-821-R-01-020.

  51. Korkisch J. Handbook of ion exchange resins: their application to inorganic analytical chemistry. Boca Raton: CRC Press; 1989.

    Google Scholar 

  52. Alderighi L, Gans P, Midollini S, Vacca A. Co-ordination chemistry of the methylmercury(II) ion in aqueous solution: a thermodynamic investigation. Inorg Chim Acta. 2003;356:8–18.

    Article  CAS  Google Scholar 

  53. Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjöberg S, et al. Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+– Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems. Pure Appl Chem. 2009;77:739–800.

    Article  Google Scholar 

  54. Štrok M, Hintelmann H, Dimock B. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples. Anal Chim Acta. 2014;851:57–63.

    Article  Google Scholar 

  55. Washburn SJ, Blum JD, Donovan PM, Bliss SM. Isotopic evidence for mercury photoreduction and retention on particles in surface waters of Central California, USA. Sci Total Environ. 2019;674:451–61.

    Article  CAS  Google Scholar 

  56. Lauretta DS, Klaue B, Blum JD, Buseck PR. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochim Cosmochim Acta. 2001;65:2807–18.

    Article  CAS  Google Scholar 

  57. Blum JD, Bergquist BA. Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem. 2007;388:353–9.

    Article  CAS  Google Scholar 

  58. Blum JD, Johnson MW. Recent developments in mercury stable isotope analysis. Rev Mineral Geochem. 2017;82:733–57.

    Article  CAS  Google Scholar 

  59. Horvat M. Determination of mercury and its compounds in water, sediment, soil and biological samples. In: Pirrone N, Mahaffey KR, editors. Dynamics of mercury pollution on regional and global scales: atmospheric processes and human exposures around the world. New York: Springer Science+Business Media Inc.; 2005. p. 153–90.

    Chapter  Google Scholar 

  60. Parker JL, Bloom NS. Preservation and storage techniques for low-level aqueous mercury speciation. Sci Total Environ. 2005;337:253–63.

    Article  CAS  Google Scholar 

  61. Chen J, Hintelmann H, Dimock B. Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS. J Anal At Spectrom. 2010;25:1402–9.

    Article  CAS  Google Scholar 

  62. Leermakers M, Lansens P, Baeyens W. Storage and stability of inorganic and methylmercury solutions. Fresenius J Anal Chem. 1990;336:655–62.

    Article  CAS  Google Scholar 

  63. Xu X, Zhang Q, Wang W-X. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: implications for using mercury stable isotopes as source tracers. Sci Rep. 2016;6:25394.

    Article  CAS  Google Scholar 

  64. Meng M, Sun R-Y, Liu H-W, Yu B, Yin Y-G, Hu L-G, et al. Mercury isotope variations within the marine food web of Chinese Bohai Sea: implications for mercury sources and biogeochemical cycling. J Hazard Mater. 2020;384:121379.

  65. Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L. Methylmercury determination in marine sediment and organisms by direct mercury analyser. Anal Chim Acta. 2009;641:32–6.

    Article  CAS  Google Scholar 

  66. Watanabe T, Kikuchi H, Matsuda R, Hayashi T, Akaki K, Teshima R. Performance evaluation of an improved GC-MS method to quantify methylmercury in fish. Shokuhin Eiseigaku Zasshi. 2015;56:69–76.

    Article  CAS  Google Scholar 

  67. Valsecchi L, Roscioli C, Schiavon A, Marziali L. Methylmercury determinatino in freshwater biota and sediments: static headspace GC-MS compared to direct mercury analyzer. MethodsX. 2021;8:101581.

Download references

Acknowledgements

We would like to thank Teresa Mathews, senior scientist and group leader of the Biodiversity and Ecosystem Health Group within the Environmental Sciences Division at Oak Ridge National Laboratory, for helping facilitate our collection of aquatic invertebrate samples from East Fork Poplar Creek and for supplying the fish tissue sample used in this study. Patrick Donovan, Spencer Washburn, and Aaron Kurz also provided valuable assistance with the collection of benthic invertebrates used in this study. We would also like to thank Paul Drevnick for the use of the Brooks Rand automated MERX MeHg analyzer. This manuscript was improved substantially thanks to the thoughtful comments of two anonymous reviewers.

This research was supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), Subsurface Biogeochemical Research (SBR) program under Award No. DE-SC0016489 and is also a product of the Critical Interfaces Science Focus Area (SFA) at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC for the DOE under Contract No. DE-AC05-00OR22725. Additional funding was provided by the Geological Society of America Graduate Student Research Grant (2019), the University of Michigan (UM) Rackham Graduate Student Research Grant (2019), the UM Scott Turner Award (2020 and 2021), the Anchor QEA Scholarship (2021), and the John D. MacArthur Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Crowther.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1683 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowther, E.R., Demers, J.D., Blum, J.D. et al. Coupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organisms. Anal Bioanal Chem 415, 759–774 (2023). https://doi.org/10.1007/s00216-022-04468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04468-8

Keywords

Navigation