Skip to main content

Advertisement

Log in

Glyco-conjugated metal–organic framework biosensor for fluorescent detection of bacteria

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are hybrid materials constructed by the linkage between an inorganic secondary building unit and an organic linker. A number of MOFs are luminescent in nature and can be structurally tuned for desirable geometry, surface functionality, and porosity. Luminescent MOFs have been endorsed for various biosensing applications. Lectins and carbohydrates have been used for the development of simple and convenient biosensing and bioimaging tools. Lectins are mostly present on the surface of microorganisms where they aid in pathogenesis. Due to this, they can be potential targets for a microbial biosensor. The present study, for the first time, explores the usage of a carbohydrate-conjugated FeMOF (Glyco-MOF) bioprobe for the selective determination of Pseudomonas aeruginosa and Escherichia coli. NH2-MIL-53(Fe) MOF was synthesized via a room temperature protocol and separately conjugated with galactose and mannose sugars via glutaraldehyde chemistry. The synthesized bioprobe is validated for structural integrity, luminescent nature, stability, and analyte assay. Electron microscopy studies validated the unhindered MOF’s morphology and structural integrity, after bioconjugation. The synthesized bioprobes were able to detect P. aeruginosa and E. coli up to respective detection limits of 202 and 8 CFU/mL, respectively. The bioprobes are selective even in co-presence of possible interferants as well as being environmentally stable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Potrzebowski MJ, Kaźmierski S, Kassassir H, Miksa B. Phosphorus-31 NMR spectroscopy of condensed matter. Annu Rep NMR Spectrosc. 2010;70:35–114.

    Article  CAS  Google Scholar 

  2. James SL. Metal-organic frameworks. Chem Soc Rev. 2003;32(5):276–88.

    Article  CAS  Google Scholar 

  3. Mehta J, et al. Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of methyl parathion. Sens Actuators, B Chem. 2019;290:267–74.

    Article  CAS  Google Scholar 

  4. Bhardwaj N, Bhardwaj S, Mehta J, Kim K-H, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron. 2016;86:799–804.

    Article  CAS  Google Scholar 

  5. Kaur H, et al. Luminescent metal-organic frameworks and their composites: potential future materials for organic light emitting displays. Coord Chem Rev. 2019;401: 213077.

    Article  CAS  Google Scholar 

  6. Sumby CJ. A thin film opening. Nat Chem. 2016;8(4):294–6.

    Article  CAS  Google Scholar 

  7. Ben T, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem. 2009;121(50):9621–4.

    Article  Google Scholar 

  8. Bhardwaj N, Bhardwaj SK, Mehta J, Kim K-H, Deep A. MOF–bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(39):33589–98.

    Article  CAS  Google Scholar 

  9. Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112(2):1126–62.

    Article  CAS  Google Scholar 

  10. Allendorf MD, Bauer CA, Bhakta R, Houk R. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38(5):1330–52.

    Article  CAS  Google Scholar 

  11. Heine J, Müller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev. 2013;42(24):9232–42.

    Article  CAS  Google Scholar 

  12. Mehta J, Dhaka S, Paul AK, Dayananda S, Deep A. Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ Res. 2019;174:46–53.

    Article  CAS  Google Scholar 

  13. Zhu G, et al. A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchim Acta. 2020;187(1):1–9.

    Article  Google Scholar 

  14. Abdolmohammad-Zadeh H, Ahmadian F. A fluorescent biosensor based on graphene quantum dots/zirconium-based metal-organic framework nanocomposite as a peroxidase mimic for cholesterol monitoring in human serum. Microchem J. 2021;164: 106001.

    Article  CAS  Google Scholar 

  15. Liu H, et al. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sens Actuators, B Chem. 2021;331: 129412.

    Article  CAS  Google Scholar 

  16. Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a “sandwich” oligonucleotide hybridization and fluorescence resonance energy transfer process using an Ln (III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design. ACS Appl Mater Interfaces. 2020;12(14):16076–87.

    Article  CAS  Google Scholar 

  17. Cohen SM. Modifying MOFs: new chemistry, new materials. Chem Sci. 2010;1(1):32–6.

    Article  CAS  Google Scholar 

  18. Hao J-N, Yan B. A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd 2+. Chem Commun. 2015;51(36):7737–40.

    Article  CAS  Google Scholar 

  19. Bhardwaj N, Bhardwaj SK, Bhatt D, Tuteja SK, Kim K-H, Deep A. Highly sensitive optical biosensing of Staphylococcus aureus with an antibody/metal–organic framework bioconjugate. Anal Methods. 2019;11(7):917–23.

    Article  CAS  Google Scholar 

  20. Silva PM, Lima AL, Silva BV, Coelho LC, Dutra RF, Correia MT. Cratylia mollis lectin nanoelectrode for differential diagnostic of prostate cancer and benign prostatic hyperplasia based on label-free detection. Biosens Bioelectron. 2016;85:171–7.

    Article  CAS  Google Scholar 

  21. Yang Y, Yu M, Yan T-T, Zhao Z-H, Sha Y-L, Li Z-J. Characterization of multivalent lactose quantum dots and its application in carbohydrate–protein interactions study and cell imaging. Bioorg Med Chem. 2010;18(14):5234–40.

    Article  CAS  Google Scholar 

  22. Bertók T, Katrlík J, Gemeiner P, Tkac J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta. 2013;180(1–2):1–13.

    Article  Google Scholar 

  23. Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011;113(3):236–47.

    Article  CAS  Google Scholar 

  24. Becer CR. The glycopolymer code: synthesis of glycopolymers and multivalent carbohydrate–lectin interactions. Macromol Rapid Commun. 2012;33(9):742–52.

    Article  CAS  Google Scholar 

  25. Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron. 2016;79:644–9.

    Article  CAS  Google Scholar 

  26. Yang H, Zhou H, Hao H, Gong Q, Nie K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sens Actuators, B Chem. 2016;229:297–304.

    Article  CAS  Google Scholar 

  27. Xi F, Gao J, Wang J, Wang Z. Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. J Electroanal Chem. 2011;656(1–2):252–7.

    Article  CAS  Google Scholar 

  28. Yang H, Jie X, Wang L, Zhang Y, Wang M, Wei W. An array consisting of glycosylated quantum dots conjugated to MoS 2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchim Acta. 2018;185(11):512.

    Article  Google Scholar 

  29. Kaushal S, Priyadarshi N, Pinnaka AK, Soni S, Deep A, Singhal NK. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens Actuators, B Chem. 2019;289:207–15.

    Article  CAS  Google Scholar 

  30. Wu M, Li X. Klebsiella pneumoniae and Pseudomonas aeruginosa. Molecular medical microbiology: Elsevier; 2015. p. 1547–64.

    Google Scholar 

  31. Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens Bioelectron. 2019;142: 111486.

    Article  CAS  Google Scholar 

  32. Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim K-H, Deep A. Optical detection of waterborne pathogens using nanomaterials. TrAC, Trends Anal Chem. 2019;113:280–300.

    Article  CAS  Google Scholar 

  33. Bhardwaj N, Bhardwaj SK, Nayak MK, Mehta J, Kim K-H, Deep A. Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TrAC, Trends Anal Chem. 2017;97:120–35.

    Article  CAS  Google Scholar 

  34. Shah N, Naseby D. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron. 2015;68:447–53.

    Article  CAS  Google Scholar 

  35. Jia F, et al. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim Acta. 2017;184(5):1539–45.

    Article  CAS  Google Scholar 

  36. Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, et al. Diarrheagenic Escherichia coli. Braz J Microbiol. 2016;47:3–30.

    Article  CAS  Google Scholar 

  37. Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health. 2013;10(12):6235–54.

    Article  Google Scholar 

  38. Schröer F, et al. Lectin and E. coli binding to carbohydrate-functionalized oligo (ethylene glycol)-based microgels: effect of elastic modulus, crosslinker and carbohydrate density. Molecules. 2021;26(2):263.

    Article  Google Scholar 

  39. Sauer MM, et al. Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets. J Am Chem Soc. 2018;141(2):936–44.

    Article  Google Scholar 

  40. Wen L, Zhou L, Zhang B, Meng X, Qu H, Li D. Multifunctional amino-decorated metal–organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties. J Mater Chem. 2012;22(42):22603–9.

    Article  CAS  Google Scholar 

  41. Bhardwaj N, Bhardwaj SK, Mehta J, Nayak MK. Deep A Bacteriophage conjugated IRMOF-3 as a novel opto-sensor for S. arlettae. New J Chem. 2016;40(9):8068–73.

    Article  CAS  Google Scholar 

  42. Li M, Zheng Z, Zheng Y, Cui C, Li C, Li Z. Controlled growth of metal–organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl Mater Interfaces. 2017;9(3):2899–905.

    Article  CAS  Google Scholar 

  43. Van Tran T, et al. Application of Fe-based metal-organic framework and its pyrolysis products for sulfonamide treatment. Environ Sci Pollut Res. 2019;26(27):28106–26.

    Article  CAS  Google Scholar 

  44. Geng N, et al. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: efficiency, kinetics and mechanism. Ultrason Sonochem. 2021;72: 105411.

    Article  CAS  Google Scholar 

  45. Gupta A, Garg M, Singh S, Deep A, Sharma AL. Highly sensitive optical detection of Escherichia coli using terbium-based metal–organic framework. ACS Appl Mater Interfaces. 2020;12(42):48198–205.

    Article  CAS  Google Scholar 

  46. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14(11):53R-62R.

    Article  CAS  Google Scholar 

  47. Hollett G, et al. Quantum ensembles of silicon nanoparticles: discrimination of static and dynamic photoluminescence quenching processes. The Journal of Physical Chemistry C. 2019;123(29):17976–86.

    Article  CAS  Google Scholar 

  48. Cacita N, Nikolaou S. Studying the interaction between trinuclear ruthenium complexes and human serum albumin by means of fluorescence quenching. J Lumin. 2016;169:115–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), India, for project grant IC-12025(11)/2020-ICD-DBT. We thank the Director, CSIR-CSIO, Chandigarh, for providing necessary infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Deep.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, D., Singh, S., Singhal, N. et al. Glyco-conjugated metal–organic framework biosensor for fluorescent detection of bacteria. Anal Bioanal Chem 415, 659–667 (2023). https://doi.org/10.1007/s00216-022-04455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04455-z

Keywords

Navigation