Skip to main content

Advertisement

Log in

Luminescent alloyed quantum dots for turn-off enzyme-based assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new bioanalytical labeling system based on alloyed quantum dots’ (QDs) photoluminescence quenching caused by an enzymatic reaction has been developed and tested for the first time. The catalytic role of the enzyme provides high sensitivity and the possibility of varying detecting time to improve assay sensitivity. Alloyed luminescent QDs were chosen in view of their small size (5–7 nm) and the high sensitivity of their optical properties to physicochemical interactions. Here, we described the synthesis of alloyed luminescent QDs and demonstrated the possibility of using them as a luminescent turn-off substrate for enzymatic assay. Synthesized alloyed QDs were found to be a sensitive turn-off substrate for glucose oxidase in homogeneous and heterogeneous assay models. CdZnSeS and CdZnSeS/ZnS QDs covered with dihydrolipoic acid and 2-mercaptoethanol were tested. A glucose oxidase limit of detection of 6.6 nM for the heterogenous high-throughput model assay was reached.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta. 2016;912:10–23. https://doi.org/10.1016/j.aca.2016.01.048.

    Article  CAS  PubMed  Google Scholar 

  2. Foubert A, Beloglazova NV, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S. Bioconjugation of quantum dots: review & impact on future application. TrAC - Trends Anal Chem. 2016;83:31–48. https://doi.org/10.1016/j.trac.2016.07.008.

    Article  CAS  Google Scholar 

  3. Moro L, Turemis M, Marini B, Ippodrino R, Giardi MT. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing. Biotechnol Adv. 2017;35:51–63. https://doi.org/10.1016/j.biotechadv.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuyama K, Ihsan N, Irie K, Mishima K, Okuyama T, Muto H. Bioimaging application of highly luminescent silica-coated ZnO-nanoparticle quantum dots with biotin. J Colloid Interface Sci. 2013;399:19–25. https://doi.org/10.1016/J.JCIS.2013.02.047.

    Article  CAS  PubMed  Google Scholar 

  5. Kumari A, Sharma A, Malairaman U, Singh RR. Proficient surface modification of CdSe quantum dots for highly luminescent and biocompatible probes for bioimaging: a comparative experimental investigation. J Lumin. 2018;199:174–82. https://doi.org/10.1016/J.JLUMIN.2018.03.032.

    Article  CAS  Google Scholar 

  6. Susumu K, Field LD, Oh E, Hunt M, Delehanty JB, Palomo V, Dawson PE, Huston AL, Medintz IL. Purple-, blue-, and green-emitting multishell alloyed quantum dots: synthesis, characterization, and application for ratiometric extracellular pH sensing. Chem Mater. 2017;29:7330–44. https://doi.org/10.1021/acs.chemmater.7b02174.

    Article  CAS  Google Scholar 

  7. Bae WK, Padilha LA, Park YS, McDaniel H, Robel I, Pietryga JM, Klimov VI. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano. 2013;7:3411–9. https://doi.org/10.1021/nn4002825.

    Article  CAS  PubMed  Google Scholar 

  8. Jang EP, Han CY, Lim SW, Jo JH, Jo DY, Lee SH, Yoon SY, Yang H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl Mater Interfaces. 2019;11:46062–9. https://doi.org/10.1021/acsami.9b14763.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Wang F, Kuang Y, Li Z, Lin Q, Shen H, Wang H, Guo L, Li LS. Se/S ratio-dependent properties and application of gradient-alloyed CdSe 1–x S x quantum dots: shell-free structure, non-blinking photoluminescence with single-exponential decay, and efficient QLEDs. ACS Appl Mater Interfaces. 2019;11:6238–47. https://doi.org/10.1021/acsami.8b17127.

    Article  CAS  PubMed  Google Scholar 

  10. Yang F, Xu Z, Wang J, Zan F, Dong C, Ren J. Microwave-assisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells. Luminescence. 2013;28:392–400. https://doi.org/10.1002/bio.2395.

    Article  CAS  PubMed  Google Scholar 

  11. Shmshad A, Tang J, Muhammad I, Han D, Zhang X, Chang S, Shi Q, Zhong H. Illustrating the shell thickness dependence in alloyed core/shell quantum-dot-based light-emitting diodes by impedance spectroscopy. J Phys Chem C. 2019;123:26011–7. https://doi.org/10.1021/acs.jpcc.9b07889.

    Article  CAS  Google Scholar 

  12. Speranskaya ES, Drozd DD, Pidenko PS, Goryacheva IY. Enzyme modulation of quantum dot luminescence: application in bioanalysis. TrAC Trends Anal Chem. 2020;127:115897. https://doi.org/10.1016/j.trac.2020.115897.

    Article  CAS  Google Scholar 

  13. Tan L, He X, Chen D, Wu X, Li H, Ren X, Meng X, Tang F. Highly H2O2-sensitive electrospun quantum dots nanocomposite films for fluorescent biosensor. J Biomed Nanotechnol. 2013;9:53–60. https://doi.org/10.1166/jbn.2013.1466.

    Article  CAS  PubMed  Google Scholar 

  14. Huang C-P, Liu S-W, Chen T-M, Li Y-K. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors Actuators B Chem. 2008;130:338–42. https://doi.org/10.1016/J.SNB.2007.08.021.

    Article  CAS  Google Scholar 

  15. Liang Y, Huang X, Yu R, Zhou Y, Xiong Y. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal Chim Acta. 2016;936:195–201. https://doi.org/10.1016/J.ACA.2016.06.018.

    Article  CAS  PubMed  Google Scholar 

  16. Yang L, Ren X, Meng X, Li H, Tang F. Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection. Biosens Bioelectron. 2011;26:3488–93. https://doi.org/10.1016/J.BIOS.2011.01.031.

    Article  CAS  PubMed  Google Scholar 

  17. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, Ariffin N, Yusof NA. A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron. 2015;67:129–33. https://doi.org/10.1016/J.BIOS.2014.07.056.

    Article  CAS  PubMed  Google Scholar 

  18. Miao Y. Detection of glucose with room-temperature phosphorescent quantum dots without conjugation. Sens Bio-Sensing Res. 2015;5:112–6. https://doi.org/10.1016/J.SBSR.2015.08.005.

    Article  Google Scholar 

  19. Wu P, He Y, Wang H-F, Yan X-P. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem. 2010;82:1427–33. https://doi.org/10.1021/ac902531g.

    Article  CAS  PubMed  Google Scholar 

  20. Qiu Z, Shu J, Tang D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem. 2017;89:5152–60. https://doi.org/10.1021/acs.analchem.7b00989.

    Article  CAS  PubMed  Google Scholar 

  21. Jin D, Seo M-H, Huy BT, Pham Q-T, Conte ML, Thangadurai D, Lee Y-I. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron. 2016;77:359–65. https://doi.org/10.1016/J.BIOS.2015.09.057.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J, Gaponik N, Eychmüller A. Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal Chem. 2012;84:5047–52. https://doi.org/10.1021/ac300714j.

    Article  CAS  PubMed  Google Scholar 

  23. Hermanson GT. Bioconjugate techniques. 2nd ed. Rockford, Illinois, USA: Elsevier Inc.; 2008.

    Google Scholar 

  24. Drozd DD, Pidenko PS, Presnyakov KY, Strokin PD, Speranskaya ES, Goryacheva IY. Dihydrolipoic acid coated alloyed quantum dots. Saratov Fall Meet 2019 Opt Nano-Technologies Biol Med. 2020;11457:60. https://doi.org/10.1117/12.2564393

  25. Gaponik N, Resch-Genger U, Eychmüller A, Lesnyak V, Grabolle M, Spieles M. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem. 2009;81:6285–94. https://doi.org/10.1021/ac900308v.

    Article  CAS  Google Scholar 

  26. Rodrigues SSM, Ribeiro DSM, Soares JX, Passos MLC, Saraiva MLMFS, Santos JLM. Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coord Chem Rev. 2017;330:127–43. https://doi.org/10.1016/J.CCR.2016.10.001.

    Article  CAS  Google Scholar 

  27. Kim K-E, Kim TG, Sung Y-M. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J Nanoparticle Res. 2012;14:1179. https://doi.org/10.1007/s11051-012-1179-8.

    Article  CAS  Google Scholar 

  28. Shiang Y-C, Huang C-C, Chang H-T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem Commun. 2009;3437.https://doi.org/10.1039/b901916b

  29. Yuan J, Guo W, Yin J, Wang E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta. 2009;77:1858–63. https://doi.org/10.1016/J.TALANTA.2008.10.032.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research (RFBR), project number 19-33-50134 mol_nr. QDs synthesis and characterization were supported by the Russian Science Foundation, grant number 20-13-00195.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Daniil D. Drozd, Nadezhda A. Byzova, Daria V. Tsyupka, and Pavel D. Strokin. Conceptualization was performed by Olga A. Goryacheva, Anatoly V. Zherdev, Irina Yu. Goryacheva, and Boris B. Dzantiev. The first draft of the manuscript was written by Daniil D. Drozd and Pavel S. Pidenko and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniil D. Drozd.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

This manuscript is dedicated to the 150th anniversary of BAM.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Analytical Methods and Applications in the Materials and Life Sciences with guest editors Ute Resch-Genger, Matthias Koch, Björn Meermann, and Michael G. Weller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozd, D.D., Byzova, N.A., Pidenko, P.S. et al. Luminescent alloyed quantum dots for turn-off enzyme-based assay. Anal Bioanal Chem 414, 4471–4480 (2022). https://doi.org/10.1007/s00216-022-04016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04016-4

Keywords

Navigation